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ABSTRACT 
 
Multi-view lenticular displays offer stereoscopic views, 
without using additional glasses. In this article a method for 
hardware accelerated volume rendering of medical data sets 
to such displays is proposed. Though the generation of 
multi-view stereoscopic images of large volume rendered 
medical data sets demands an enormous amount of 
calculations, the GPU-based implementation offers 
interactive manipulation throughout. It is shown how the 
multi-view images are obtained from different focal spot 
positions, and how they are composed into the final bitmap 
that is displayed on the lenticular screen. 

Figure 1: A Direct Volume Rendered image.  
 

I. INTRODUCTION 
 
New developments in medical imaging modalities lead to 
ever increasing sizes in volumetric data. The ability to 
visualize and manipulate this 3D data interactively is of 
great importance in the analysis and interpretation of the 
data. Direct Volume Rendering is a visualization technique 
that allows a natural representation, while maximally 
preserving the information, which is encapsulated in the 
data (see figure 1). The interactive visualization of such data 
remains a challenge, since the frame rate is heavily 
depending on the amount of data to be visualized. 

Multi-view lenticular displays [1] allow a stereoscopic 
view on the data to multiple users, without the use of any 
additional aid, such as goggles. The additional depth 
impression that a stereoscopic image offers, allows a natural 
interpretation of the 3D data. A lenticular display typically 
offers four to fifteen spatially sequential images, which 
allows to view the screen from different positions. The fact 
that the viewer of a lenticular display is not limited to single 
sweet spot, makes these displays particularly suitable for 
use in a medical environment. 

In this article a method is discussed for generating Direct 
Volume Rendered images for display on lenticular screens. 
It is presented how such an algorithm can be implemented 
to benefit from the processing power of modern graphics 
hardware. In this way interactive frame rates can be 

reached, enabling to fully profit from lenticular displays in a 
clinical environment.  
 
 

II. METHOD 
 
The Graphics Processing Unit (GPU) is a powerful parallel 
processor on today�s off-the-shelf graphics cards. It is 
especially capable in performing Single Instruction Multiple 
Data (SIMD) on large amounts of data. In this paper we 
intend to sketch a method for rendering volumetric 3D 
medical datasets to a lenticular display, employing the GPU. 
Each frame, displayed on the lenticular screen, is composed 
of multiple different views (nine in our case). The views are 
separately rendered from slightly different camera positions 
(see figures 3 and 4), and then the resulting images have to 
be composited for display on the lenticular screen. Since we 
harvest the vast processing power of the GPU for the Direct 
Volume Rendering [2], as well as for the compositing 
phase, we can perform this whole process at interactive 
frame rates, even for large datasets (> 100 MB). 
 
 

III. THE MULTI-VIEW LENTICULAR DISPLAY 
 
The multi-view lenticular display device consists a sheet of 
cylindrical lenses (lenticulars) placed on top of an LCD in 
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such a way that the LCD image plane is located at the focal 
plane of the lenses [3]. The effect of this arrangement is that 
LCD pixels located at different positions underneath the 
lenticulars fill the lenses when viewed from different 
directions. Provided that these pixels are loaded with 
suitable stereo information, a 3D stereo effect is obtained, in 
which the left and right eye see different, but matching 
information. The screen we used offered nine distinct views, 
but our method is applicable to any number of views.  

The fact that the different LCD pixels are assigned to 
different views (spatial multiplex), leads to a lower 
resolution per view than the resolution of the LCD grid [4]. 
In order to distribute this reduction of resolution over the 
horizontal and vertical axis, the lenticular cylindrical lenses 
are not placed vertically and parallel to the LCD column, 
but slanted at a small angle. 

The resulting assignment of a set of LCD pixels is 
illustrated in figure 2. Note that the red, green and blue 
color channel of a single pixel are depicted in different 
views. 
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Figure 3: The frustums resulting from three different 
view points. 
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IV. THE DIFFERENT VIEWS 
 
The frustums that result from the different focal spot 
positions, are illustrated in figure 3. The viewing directions 
of the frustums are not parallel to the normal of the screen, 
except for the center one. Therefore the corresponding 
frustums are asymmetric [5,6]. The view port coordinates of 
such parallel axis, asymmetric frustum perspective 
projections can be determined as follows: 
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Whereby f denotes the focal distance, n the view number 
and d the distance between the view cameras. Figure 2: The cylindrical lenses depict every sub-

pixel in a different view. The numbers in the sub-
pixels indicate in which view they are visible. 

Figure 4 illustrates the images that result from rendering 
the scene from focal spot positions with an offset to the 
center of the screen. 
 

Figure 4: The same scene rendered from the most 
left and most right view point. 

 
V. DIRECT VOLUME RENDERING 

 
For each view the volumetric data set has to be rendered, 
using the appropriate frustum perspective projection. Since 
every view has an effective resolution of ( views#/1 ) of 
the resolution of the LCD matrix in the horizontal and 
vertical direction, the individual views can be drawn in a 
view port, with a corresponding the resolution. 

In order to use the GPU when rendering the datasets, the 
data has to be loaded in the texture memory of the graphics 
card. To obtain textures which are better suited for the 
memory architecture of the graphics card and to be able to 
deal with data set sizes exceeding the available texture 
memory, the data set is divided into so-called bricks. 

The actual Direct Volume Rendering process consists of 
evaluating the volume rendering equation for every ray of 
light. We use one ray per pixel, which is defined by the 
focal spot and the pixel position. The volume rendering 
equation takes color and opacity value as a function of the 



position as input. Therefore the scalar values of the medical 
data set have to be mapped to color and opacity values. The 
volume render integral can be approximated by the 
following summation: 
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whereby i denotes the resulting color of a ray, αn the opacity 
at a given sample n, and cn the color at the respective 
sample. 

This summation can be broken down in N iterations over 
the so-called over operator [7], whereby the rays are 
traversed in a back to front order: 
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Here Cn denotes the intermediate value for a ray. For 
Equation 3 standard alpha blending, offered by DirectX or 
OpenGL, can be used. In order to execute Equation 3, a set 
of textured slices, containing the volumetric medical data, 
are blended into each other, whereby the volumetric data is 
sliced from back to front [2]. The intermediate results Cn are 
written in the frame buffer. 

Our GPU-based Direct Volume Rendering implement-
ation is capable of rendering highlights, diffuse and ambient 
lighting, which enhances the depth impression. Further it 
can handle any perspective projection matrix. 

The rendered views are stored locally on the graphics 
card. They are put vertically next to each other, in a single 
wide rectangular texture map, which is denoted as texture1. 
The fact that the entire 3D scene has to be drawn multiple 
times, is partially compensated by the fact that the 
individual views have a lower resolution than the output 
window. Tests show that we can generate up to 15 frames 
per second for dataset consisting of 2563 voxels on a nine 
view lenticular display. 
 
 

VI. COMPOSITING 
 
To composite the final image, which will be displayed on 
the lenticular screen, the red, green and blue component of 
each pixel has to be sampled from a different view (see 
figure 2). The view number stays fixed all the time for each 
sub-pixel. Thus, if the blue component of a certain pixel 
samples from e.g. view 3, then that will never change in 
time. Therefore this information is pre-calculated once, and 
then put in a static texture map, called texture0. 

In the compositing phase, all the pixels in the output 
image are parsed by a GPU program. For each pixel, 
texture0 will deliver the view numbers that have to be 
sampled for the red, green and blue components. The 

respective views are then sampled in texture1, delivering the 
appropriate Direct Volume Rendered pixel value. 

 
 

VII. CONCLUSIONS 
 
In this article a method for accelerated direct volume 
rendering to multi-view lenticular displays has been 
presented. Due to the GPU-acceleration, interactive frame 
rates can be reached, which allows intuitive manipulation of 
the rendered scene. Since both the volume rendering and the 
compositing take place on the graphics hardware, the 
requirements for the other components of the PC system are 
rather modest. Thus the realization of the proposed high 
performance system can be very cost effective. 

The fact that viewers do not need to wear any additional 
glasses, and are not limited to a sweet spot, as well as the 
fact that large data sets can be manipulated interactively, 
make this method very suitable for a clinical environment. 
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