
GPU-ACCELERATED VOLUME RENDERING TO 3D LENTICULAR DISPLAYS

Daniel Ruijters

Philips Medical Systems, X-Ray Predevelopment
Veenpluis 6, 5680DA Best, the Netherlands

danny.ruijters@philips.com

ABSTRACT

Multi-view lenticular displays offer stereoscopic views,
without using additional glasses. In this article a method for
hardware accelerated volume rendering of medical data sets
to such displays is proposed. Though the generation of
multi-view stereoscopic images of large volume rendered
medical data sets demands an enormous amount of
calculations, the GPU-based implementation offers
interactive manipulation throughout. It is shown how the
multi-view images are obtained from different focal spot
positions, and how they are composed into the final bitmap
that is displayed on the lenticular screen.

Figure 1: A Direct Volume Rendered image.

I. INTRODUCTION

New developments in medical imaging modalities lead to
ever increasing sizes in volumetric data. The ability to
visualize and manipulate this 3D data interactively is of
great importance in the analysis and interpretation of the
data. Direct Volume Rendering is a visualization technique
that allows a natural representation, while maximally
preserving the information, which is encapsulated in the
data (see figure 1). The interactive visualization of such data
remains a challenge, since the frame rate is heavily
depending on the amount of data to be visualized.

Multi-view lenticular displays [1] allow a stereoscopic
view on the data to multiple users, without the use of any
additional aid, such as goggles. The additional depth
impression that a stereoscopic image offers, allows a natural
interpretation of the 3D data. A lenticular display typically
offers four to fifteen spatially sequential images, which
allows to view the screen from different positions. The fact
that the viewer of a lenticular display is not limited to single
sweet spot, makes these displays particularly suitable for
use in a medical environment.

In this article a method is discussed for generating Direct
Volume Rendered images for display on lenticular screens.
It is presented how such an algorithm can be implemented
to benefit from the processing power of modern graphics
hardware. In this way interactive frame rates can be

reached, enabling to fully profit from lenticular displays in a
clinical environment.

II. METHOD

The Graphics Processing Unit (GPU) is a powerful parallel
processor on today�s off-the-shelf graphics cards. It is
especially capable in performing Single Instruction Multiple
Data (SIMD) on large amounts of data. In this paper we
intend to sketch a method for rendering volumetric 3D
medical datasets to a lenticular display, employing the GPU.
Each frame, displayed on the lenticular screen, is composed
of multiple different views (nine in our case). The views are
separately rendered from slightly different camera positions
(see figures 3 and 4), and then the resulting images have to
be composited for display on the lenticular screen. Since we
harvest the vast processing power of the GPU for the Direct
Volume Rendering [2], as well as for the compositing
phase, we can perform this whole process at interactive
frame rates, even for large datasets (> 100 MB).

III. THE MULTI-VIEW LENTICULAR DISPLAY

The multi-view lenticular display device consists a sheet of
cylindrical lenses (lenticulars) placed on top of an LCD in

mailto:danny.ruijters@philips.com

such a way that the LCD image plane is located at the focal
plane of the lenses [3]. The effect of this arrangement is that
LCD pixels located at different positions underneath the
lenticulars fill the lenses when viewed from different
directions. Provided that these pixels are loaded with
suitable stereo information, a 3D stereo effect is obtained, in
which the left and right eye see different, but matching
information. The screen we used offered nine distinct views,
but our method is applicable to any number of views.

The fact that the different LCD pixels are assigned to
different views (spatial multiplex), leads to a lower
resolution per view than the resolution of the LCD grid [4].
In order to distribute this reduction of resolution over the
horizontal and vertical axis, the lenticular cylindrical lenses
are not placed vertically and parallel to the LCD column,
but slanted at a small angle.

The resulting assignment of a set of LCD pixels is
illustrated in figure 2. Note that the red, green and blue
color channel of a single pixel are depicted in different
views.

d
f

screen

Figure 3: The frustums resulting from three different
view points.

- 2 2 0 4 - 1 - 3 1 - 4 3 - 2 2 0 4 - 1- 3

- 3 1 - 1 3 - 2 - 4 0 4 2 - 3 1 - 1 3 - 2- 4

- 4 0 - 2 2 - 3 4 - 1 3 1 - 4 0 - 2 2 - 34

IV. THE DIFFERENT VIEWS

The frustums that result from the different focal spot
positions, are illustrated in figure 3. The viewing directions
of the frustums are not parallel to the normal of the screen,
except for the center one. Therefore the corresponding
frustums are asymmetric [5,6]. The view port coordinates of
such parallel axis, asymmetric frustum perspective
projections can be determined as follows:









−
⋅⋅+

−
⋅⋅−

zf
fydn

zf
fdnx ,)((1)

Whereby f denotes the focal distance, n the view number
and d the distance between the view cameras. Figure 2: The cylindrical lenses depict every sub-

pixel in a different view. The numbers in the sub-
pixels indicate in which view they are visible.

Figure 4 illustrates the images that result from rendering
the scene from focal spot positions with an offset to the
center of the screen.

Figure 4: The same scene rendered from the most
left and most right view point.

V. DIRECT VOLUME RENDERING

For each view the volumetric data set has to be rendered,
using the appropriate frustum perspective projection. Since
every view has an effective resolution of (views#/1) of
the resolution of the LCD matrix in the horizontal and
vertical direction, the individual views can be drawn in a
view port, with a corresponding the resolution.

In order to use the GPU when rendering the datasets, the
data has to be loaded in the texture memory of the graphics
card. To obtain textures which are better suited for the
memory architecture of the graphics card and to be able to
deal with data set sizes exceeding the available texture
memory, the data set is divided into so-called bricks.

The actual Direct Volume Rendering process consists of
evaluating the volume rendering equation for every ray of
light. We use one ray per pixel, which is defined by the
focal spot and the pixel position. The volume rendering
equation takes color and opacity value as a function of the

position as input. Therefore the scalar values of the medical
data set have to be mapped to color and opacity values. The
volume render integral can be approximated by the
following summation:

∑ ∏
= =

−⋅=
N

n

n

n
nnnci

0 0'
'))1((αα (2)

whereby i denotes the resulting color of a ray, αn the opacity
at a given sample n, and cn the color at the respective
sample.

This summation can be broken down in N iterations over
the so-called over operator [7], whereby the rays are
traversed in a back to front order:

nnnnn CcC ⋅−+⋅=+)1(1 αα (3)

Here Cn denotes the intermediate value for a ray. For
Equation 3 standard alpha blending, offered by DirectX or
OpenGL, can be used. In order to execute Equation 3, a set
of textured slices, containing the volumetric medical data,
are blended into each other, whereby the volumetric data is
sliced from back to front [2]. The intermediate results Cn are
written in the frame buffer.

Our GPU-based Direct Volume Rendering implement-
ation is capable of rendering highlights, diffuse and ambient
lighting, which enhances the depth impression. Further it
can handle any perspective projection matrix.

The rendered views are stored locally on the graphics
card. They are put vertically next to each other, in a single
wide rectangular texture map, which is denoted as texture1.
The fact that the entire 3D scene has to be drawn multiple
times, is partially compensated by the fact that the
individual views have a lower resolution than the output
window. Tests show that we can generate up to 15 frames
per second for dataset consisting of 2563 voxels on a nine
view lenticular display.

VI. COMPOSITING

To composite the final image, which will be displayed on
the lenticular screen, the red, green and blue component of
each pixel has to be sampled from a different view (see
figure 2). The view number stays fixed all the time for each
sub-pixel. Thus, if the blue component of a certain pixel
samples from e.g. view 3, then that will never change in
time. Therefore this information is pre-calculated once, and
then put in a static texture map, called texture0.

In the compositing phase, all the pixels in the output
image are parsed by a GPU program. For each pixel,
texture0 will deliver the view numbers that have to be
sampled for the red, green and blue components. The

respective views are then sampled in texture1, delivering the
appropriate Direct Volume Rendered pixel value.

VII. CONCLUSIONS

In this article a method for accelerated direct volume
rendering to multi-view lenticular displays has been
presented. Due to the GPU-acceleration, interactive frame
rates can be reached, which allows intuitive manipulation of
the rendered scene. Since both the volume rendering and the
compositing take place on the graphics hardware, the
requirements for the other components of the PC system are
rather modest. Thus the realization of the proposed high
performance system can be very cost effective.

The fact that viewers do not need to wear any additional
glasses, and are not limited to a sweet spot, as well as the
fact that large data sets can be manipulated interactively,
make this method very suitable for a clinical environment.

VIII. REFERENCES

[1] C. van Berkel, D.W. Parker, and A.R. Franklin, �Multiview 3D
LCD,� Proc. SPIE - Volume 2653, Stereoscopic Displays and
Virtual Reality Systems III, pp. 32-39, April 1996.

[2] D. Ruijters and A. Vilanova, �Optimizing GPU Volume
Rendering,� Journal of WSCG 2006, Volume 14, No. 1-3,
pp. 9-16, January 2006.

[3] C. van Berkel, �Image Preparation for 3D-LCD,� Proc. SPIE �
Volume 3639, Stereoscopic Displays and Virtual Reality
Systems VI, pp. 84-91, May 1999.

[4] N.A. Dodgson, �Autostereo displays: 3D without glasses,�
EID: Electronic Information Displays, 1997

[5] D. Maupu, M.H. Van Horn, S. Weeks, and E. Bullit, �3D
Stereo Interactive Medical Visualization,� IEEE Computer
Graphics and Applications, Volume 25, No. 5, pp. 67-71,
September-October 2005.

[6] P. Bourke,
http://astronomy.swin.edu.au/~pbourke/opengl/stereogl/

[7] T. Porter, T. Duff, �Compositing Digital Images,� ACM
Computer Graphics Volume 18, No. 3, pp. 253-259, July 1984

http://astronomy.swin.edu.au/~pbourke/opengl/stereogl/

	GPU-ACCELERATED VOLUME RENDERING TO 3D LENTICULAR DISPLAYS
	ABSTRACT

