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Abstract

Multi-modal image fusion during
minimally invasive treatment

The volume of image guided interventions and therapy idigjncreasing, because
of associated better clinical outcome and reduced pattegins During such mini-
mally invasive medical treatment the clinician relies odiotogical images, often
produced in real-time, to guide the intervention. Priorreatment, diagnosis and
intervention planning is frequently performed using tomagdnical images, which
provide a detailed representation of the patient’s anatanaypathology. In this the-
sis the fusion of those different types of images is preskniteorder to provide the
clinician with more relevant data to guide the procedurenc&ithe fusion is per-
formed during the clinical intervention, it is essentiatlthe technical steps can be
executed within limited time. Furthermore, it is vital thtae resulting fused repre-
sentations are easy to interpret. The technical approdabbéesre described here to
achieve this goal comprise fast and intuitive visualizatié the fused data and rapid
co-registration of multiple image datasets.

In order to achieve an optimal performance the parallel agatpn power of
the graphics processing unit (GPU) has been exploited irvighelization and re-
gistration algorithms. Regarding visualization, a dettidadirect volume rendering
approach was developed, taking the particularities of tRéJ@to account. This
volume rendering technique has been applied in the effi¢ies®d visualization of
multiple datasets, and in the interactive rendering foostgreoscopic displays. An
elastic B-spline driven registration method has been nméppethe GPU to accom-
plish minimal computation times. Furthermore, registmatalgorithms especially
designed for peri-interventional usage were examined. gistation method only
using the geometry information of the X-ray C-arm systemMeen described, and
a dedicated registration algorithm targeted at real-tiasxular images has been de-
veloped.

The proposed techniques have been validated individuadig, have been eval-
uated together in three concrete clinical applicationsltirodal roadmapping for
neuro-vascular treatment, multi-modal needle punctuaerphg and tracking, and
CT fusion with X-ray angiography for stent placement witbaronary artery disease
treatment.
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Multi-modale beeldfusie tijdens
minimaal-invasieve behandelingen

Het aantal beeldgestuurde medische interventies neerntosnevzanwege de geas-
socieerde verbeterde klinische resultaten. Gedurendiniguth invasieve medische
behandelingen vertrouwt de arts enkel op radiologisch&baem het verloop van
de interventie te sturen. De diagnose en het behandelplaalsvoorafgaand aan de
behandeling uitgevoerd op basis van tomografische beellere bieden een gede-
tailleerde afspiegeling van de anatomie en pathologie wapatent. In dit proef-
schrift wordt de fusie van deze verschillende typen vandmeloorgesteld, om de
arts meer relevante data om de procedure te leiden aan tenbiddingezien deze
fusie tijdens de klinische interventie wordt verricht, it lessentieel dat de noodza-
kelijke technische stappen binnen een beperkte tijdsdunundn worden uitgevoerd.
Verder is het van vitaal belang dat de resulterende beeleievoadig zijn te inter-
preteren tijdens de behandeling. De technische stappein dit proefschrift wor-
den beschreven, omvatten snelle enitigue visualisatie van de gefuseerde data en
snelle co-registratie van meerdere beelddatasets.

De parallelle rekenkracht van de grafische processor ed(B&U) wordt benut
om optimale prestaties te behalen in de visualisatie- eistragealgoritmes. Met
betrekking tot visualisatie is er een directe volume reimgetiechniek ontwikkeld die
rekening houdt met de specifieke eigenschappen van de GRid.\D&ime render-
ing techniek is vervolgens toegepast in de &fiité gezamenlijke visualisatie van
meerdere datasets, en in de interactieve rendering voostautoscopische scher-
men. Een elastische registratiemethode, gebaseerd olinBssps op de GPU gm-
plementeerd om minimale rekentijden te bereiken. Verdarregistratiealgoritmes
onderzocht die bedoeld zijn voor peri-interventioneelrgéb Een registratiemetho-
de die enkel de geometrie informatie van héniyen C-arm systeem gebruikt is
beschreven, en er is een registratiealgoritme ontwikkatdsgeciaal toegesneden is
op real-time vasculaire beelddata.

De voorgestelde technische oplossingen zijn individuegalideerd, en zijn sa-
mengesteld givalueerd in drie concrete klinische toepassingen: matiae road-
mapping voor neurovasculaire behandeling, multimodasdhpunctie planning en
navigatie, en CT fusie met angiografischérfigen voor het plaatsen van stents in
vernauwingen in de kransslagader.
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Multi-modale beeldfusie tijdens
minimaal-invasieve behandelingen

1 Achtergrond

Bij een minimaal invasieve operatie wordt de patibehandeld via katheters, naalden
of andersoortige instrumenten. Dit in tegenstelling tatlitionele chirurgie, waarbij
de patént opengesneden wordt om de pathologie te behandelen vigmti@ van de
minimaal invasieve instrumenten in het lichaam van degpatyebeurt met de hulp
van medische beeldvormende apparatuur, zoalgtd®n en ultrasound. Aangezien
dit type behandelingen minder trauma veroorzaken, wor@eaver het algemeen
geassocieerd met kortere verkoevertijden en betere @fiaisesultaten. Minimaal
invasieve technieken worden dan ook ingezet voor een stgetk palet van aan-
doeningen, en het volume per aandoening neemt eveneengatm@fgaand aan de
invasieve behandeling wordt er vaak een drie dimensionategrafische afbeelding
in een CT of MRI scanner gemaakt. Deze scan bevat een géeletdd afspiegeling
van de anatomie en pathologie van de grtien wordt daarom gebruikt tijdens de
diagnose en ook voor het opstellen van een behandelplan.

In dit proefschrift worden technieken ig¢roduceerd en uitgediept om de ver-
schillende beschikbare beeldinformatiebronnen te meggeinirende de behandel-
ing. Deze technieken betreffen visualisatiemethoden ethaden voor de beeldre-
gistratie van de verschillende beelden. De nadruk wordttiprefschrift gelegd
op snelle algoritmes en iritieve visualisatie. De parallelle rekenkracht van de gra-
fische processor eenheid (GPU) wordt benut om optimale girestte behalen in
de visualisatie- en registratiealgoritmes. Snelheid & felangrijk aangezien het
rekenwerk wordt uitgevoerd terwijl de klinische interviersan de gang is. Initieve
interactie is eveneens essentieel, aangezien de artsaniflaeht moet verdelen over
het verloop van de behandeling en de stimuli die van dépgén de vele apparaten
in de operatieruimte afkomstig zijn. Bovendien leidt eeiiiieve interactie tot een
kleinere kans op het maken van fouten.
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2 Visualisatie

De intra-operatieve setting en dynamiek verschillen bdhjomp belangrijke pun-
ten van die van een diagnostische omgeving. Dit resulteeaindere functionele
eisen die aan de intra-operatieve visualisatie worderefgestDe waarnemer van
intra-operatieve beelden zit typisch niet achter een deskierkstation, maar staat
achter de behandeltafel waarop de @attizich bevindt. Dit beperkt de manier van
interactie met het werkstation. Verder is de primaire focars de behandelende arts
bij voorkeur gericht op de pdit en het verloop van de behandeling, en niet op de
interactie met de computer. Aangezien de navigatie van démaal invasieve in-
strumenten geschiedt aan de hand van de live beelden dieisidiel beeldvormende
apparatuur worden gemaakt, zijn deze beelden van eminkmtgoeloch vormen zij
slechts een van de bronnen van stimuli, die de arts moet vikewdijdens de be-
handeling. Verder is het ook van belang om te realiserenrddéeehts beperkte tijd
beschikbaar is om de beelden te interpreteren, zeker atsess situaties optreden
tijdens de behandeling.

Al deze factoren leiden tot de eis dat de interactie met d&beesenvoudig is
en dat de intra-operatieve visualisaties makkelijk terpreteren zijn, zonder com-
promissen te sluiten in de visualisatie van de klinischvaalée details. Dit maakt
populaire diagnostische visualisatie methoden voor gefite datasets zoals zij-aan-
zij of schaakbord presentaties van 2D dwarsdoorsnedensohigé aangezien zij
teveel interactie vereisen en het teveel tijd kost om zetégpneteren. In plaats daar-
van is een eenvoudige 3D weergave vereist, die alle releviatails toont. Dit is een
uitdagende opgave, aangezien gefuseerde data een zeehgegeelheid informatie
binnen een beperkt volume pakt, en de resulterende viatialimak moeilijk in een
oogopslag te behappen is. Verder is er vaak veel tijd nodigeemafbeelding uit
de enorme hoeveelheid data te genereren, hetgeen intgsntanipulatie bemoei-
lijkt. Dit proefschrift beoogt om technische oplossingervinden voor de geschetste
problemen.

2.1 Snelle volume rendering

Volume Rendering is een methode om drie dimensionale vdhisnke voxel data
direct (dus zonder voorbewerking) af te beelden op een tieertsionaal vliak. Tij-

dens het uitvoeren van deze methode worden optische elypgsen zoals kleur en
transparantie aan elk punt in de continue ruimte toegekdditl.gebeurd door de
scalaire waarden op de discrete voxelposities te interpols de continue ruimte.
De scalaire waarden worden vervolgens afgebeeld op kletiarsparantie waarden
middels een transferfunctie. De twee dimensionale aflireghldordt verkregen door
de volgende formule toe te passen op lichtstralen die dooodgnue ruimte gevolgd

worden: ’
— ’T(x’)d:r'
i= /c(a:) e ! dx (0.1)

0

Hier representeeitde resulterende kleur op de 2D afbeeldir(g;) de kleur op posi-
tiex ent(x) de lichtabsorptie (het tegenovergestelde van transpejaptdie positie,
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screen volume

Figuur 1: Het volume render proces; de lichtstralen door de pixels van het sthesrden
door het voxel volume geprojecteerd, en de volume render fofnfliledidt op deze trajecten
toegepast.

zie figuurl. Deze volume render vergelijking kan worden lbenadoor een aantal
discrete samples op de te volgen straal te nemen en in dend@ggmmatie in te
vullen:

N n
i= Z(an Cn + H (1—ayp)) (0.2)
n=0 n’=0

Waarbij «,, voor de opaciteit er,, voor de kleur van sample staat. Deze formule
kan zeer effi@nt worden uitgevoerd op de grafische hardware door op redgelen
afstanden dwarsdoorsneden van het volume te nemen, en dddelsizogenaamde
alfa-blending met elkaar te mengéh([1-8], zie figtur 2.

Bij volume rendering draagt slechts een heel klein gedegltealle voxels bij
aan het eindresultaat. Dit komt doordat de meeste voxeledigltransparant zijn
of verdekt worden door andere delen van het volume. Daatpin&n veel datasets
als relatief 'leeg’ worden aangemerkt; meestal bevat $ebBb6 tot 40% van alle
voxels zichtbare data, en zelfs zeer gevulde CT en MR datasetschrijden de 55%
zeer zelden. Met name vasculaire datasets zijn vaak 'leeggezien de bloedvaten
vanwege hun vorm een klein gedeelte van het volume vullgrisgh 1% tot 8%).

De leegte van het voxel volume kan worden benut om het volumeeg te ver-
snellen. Deze zogenaamde 'space-skipping’ strategieedsriangere tijd bekend in
de IiteratuurEbEZ]. In het kader van dit proefschrift iseen 'space-skipping’ me-
thode ontwikkeld die in het bijzonder de eigenschappen agrdfische hardware
in aanmerking neemt door gebruik te maken van een dubbedehiabrchie; Eerst
wordt het voxel volume in grote blokken opgehakt. De omvaag gleze blokken
wordt zo afgestemd dat zij optimaal corresponderen met gaciiziten van het tex-
tuurgeheugen op de grafische kaart. Lege blokken hoevesrietfnaar de grafische
hardware te worden verstuurd. Dan wordt er vervolgens mirdxtn octree structuur
opgebouwd, die de zichtbare data per blok representeertbdtailp van de octree
kan dan onzichtbare data worden overgeslagen tijdens heheaendering proces,
zie figuur3. Dat deze strategie tot een behoorlijke extrdhemswinst kan leiden
blijkt uit tabel[].
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Figuur 2: Links: Een middels volume rendering afgebeelde dataset met grotedgdsttussen

de dwarsdoorsneden. Rechts: Dezelfde dataset, maar nu met kléaredafs tussen de dwars-
doorsneden.

2.2 Intuitieve visualisatie

De intra-operatief geregistreerde data dient samen in ekrseerd beeld te worden
getoond. Deze gefuseerde visualisatie moet eenvoudigegpreteerd kunnen wor-
den, alle Klinisch relevante details bevatten, en moet fudies realtime gegenereerd
worden. Om dit voor elkaar te krijgen is er een methode orkeltk die 3D vas-
culaire data mixt met zowel 3D data die de zachte weefselstt@sook 2D live
fluoroscopische data. Daartoe wordt eerst de vasculaiesetaén zachte weefsel
dataset geregistreerd en een mesh model van de vatenbo@ascllaire dataset
geextraheerd. Om de vatenboom en de zachte weefsels te memgdhde mesh
eerst getekend en de data met de zachte weefsels daar da@l rad volume ren-
dering in gemengd. Het z-buffer zorgt ervoor dat de kleuran ¢e mesh op het
juiste moment in de volume rendering vergelijking gewevemden. Zoals in figuur
te zien is, kunnen de delen van de vatenboom die verdektematdor de zachte
weefsels als silhouet getoond worden. Op die manier bijftarm van de hele vaten-
boom en de zachte weefsels zichtbaar, terwijl het ook dijkdsiwaar beiden elkaar

Figuur 3: Een fragment van een volume gerenderde afbeelding met (links) debboiden
zichtbaar, (midden) de octrees zichtbaar, en (rechts) beide struchicatbaar.



2 Visualisatie iX

Grafische kaart a b Versnellinga/b
nVidia QuadroFX 3000 AGP | 25.5fps| 2.2 fps 11.6
nVidia QuadroFX 3400 PCIx | 73.5fps| 9.6 fps 7.66
ATi FireGL X1, xy aligned 83.3fps| 0.23 fps 362
ATi FireGL X1, non xy aligned| 27.4 fps| 0.23 fps 119
ATi Radeon 9000 mobility 9.35fps| 0.26 fps 36.0
3DLabs Wildcat 7110 21.3fps| 0.38 fps 56.1

Tabel 1: Gemiddelde beeldverversingssnelheden mpté optimale combinatie van brick
blokken en octrees, eh)(GPU volume rendering zonder brick blokken en octrees.

Figuur 4: De silhouet visualisatie maakt het mogelijk om de verdekte delen van de vate
boom in relatie met de contextuele data te tonen, terwijl het beeld toch ediguelbevatten
blijft. Links: de cerebrale bloedvaten, gesegmenteerd in een 3DRA tlaReehts: de cere-
brale bloedvaten gecombineerd met een volume gerenderd gedeekevdR dataset. Het
aneurysma, dat door de MR data bedekt is, blijft dankzij het silhoubtzichtbaar.

raken. Het live fluoroscopisch beeld kan daar vervolgenshaean gelegd worden, en
afhankelijk van het onderliggend onderwerp anders beweokden, zie figuurls.

Om de 3D vorm tijdens de Klinische interventie in een enkelgopslag behap-
baar te maken is het mogelijk om de data op een autosterasskbgrherm weer
te geven. Stereoscopische perceptie staat een completeidréensionale indruk
toe, zonder dat de Kklinische dataset daarbij bewogen heefbtden. Dit leidt tot
minder interactie met de computer en daardoor tot tijdswtijteens de interventie.
Om 3D data op een autostereoscopisch scherm te tonen meevalezt meerdere
kijkrichtingen (negen voor het scherm dat wij gebruikenyigealiseerd worden,
zie figuur[®. Aangezien dit een behoorlijke impact op de Jlisatiesnelheid heeft
hebben we een aanpak onderzocht waarbij we de resolutieevaegen beelden dy-
namisch aanpassen, afhankelijk van de gevraagde snethéiel lzeschikbare reken-
capaciteit. Als er veel veranderingen van de beelden naglignordt de resolutie
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Figuur 5: Links: een fluoroscopie beeld. Midden: het fluoroscopie beeld genaiktle 3DRA
vatenboom. Rechts: het fluoroscopie beeld gemixt met de 3DRA oaterdn een dwars-
doorsnede van een CT dataset.

Figuur 6: Het licht van de LCD sub-pixels wordt in verschillende richtingen afgehatpor
de lenticulaire lenzen.

omlaag geschroefd, om zo de benodigde snelheid te halevijl teij trage of geen
veranderingen de scene in een hoge resolutie getekend kalenwoDaarbij is de
optimale resolutie afhankelijk van het pixelgrid, dat hift@stereoscopische scher-
men typisch geen orthogonaal grid is. De optimale resokdie de verschillende
kijkrichtingen is te bepalen door dit non-orthogonale grichet frequentiebereik te
onderzoeken, zie figullt 7.

3 Registratie

Registratie is een proces waarbij het doel is om twee betldes van hetzelfde on-
derwerp spatieel dusdanig op elkaar af te beelden, datfdezahatomie in beide

beelden over elkaar heen ligt. Meestal wordt daarbij eerbedtte datasets spatieel
gemanipuleerd (de floating dataset), terwijl de anderigtil(te referentie dataset).
De toepassing van beeldregistratie tijdens een klinisctezventie stelt grenzen aan
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Figuur 7: (a) Het LCD pixel grid met daarin het nummer van de kijkrichting waaren d
sub-pixels worden afgebogen. De groene sub-pixels die in kijkrichtimgabtfloor) worden
getoond zijn omcirkeld. (b) Alle sub-pixels, onafhankelijk van hun kleerjrdkijkrichting

0 (rechtdoor) worden getoond zijn omcirkeld. (c) Het rooster van memg sub-pixels voor
kijkrichting 0 in het frequentiebereik. De Voronoi cel van het roostenizergemarkeerd. In
blauw is de Nyquist frequentie van het orthogonale grid van de gegenderdeelden gemar-
keerd. Aangezien de Voronoi cel niet het hele Nyquist bereik okaraer lichte aliasing
optreden in de hogere frequenties. (d) Het rooster van de sub-pigetskijkrichting 0, on-
afhankelijk van hun kleur. Aangezien het Nyquist frequentiebereikwflainnen de Voronoi
cel (roze) valt, zal er geen aliasing in het intensiteitsbeeld optreden.

het algoritme en de mogelijkheid om te interacteren met teeuiieer. De voornaam-
ste beperking is de beschikbare rekentijd. Ondanks de atdrtige ontwikkelingen
van de rekenkracht van moderne computers hebben regsiairitmes de neiging
om enkele minuten tot zelfs meerdere uren in beslag te nerdear het gebruik

tijdens interventionele behandelingen is dat echter mie¢ptabel.

Veel registratiemethodieken hebben profijt van interactet de gebruiker. Ze
hebben input van de gebruiker nodig om de registratietaatk uberen, of presteren
aanzienlijk beter na een grove initialisatie door de gedenuiDe mogelijkheden tij-
dens de klinische interventie zijn echter beperkt. De alits,aan de behandeltafel
staat, heeft vaak minder ergonomische en exacte inputappartot zijn beschikking
(o.a. vanwege steriliteit). Verder is de tijd en aandachtddi arts aan de invoer voor
het registratiealgoritme kan besteden beperkt. De methdigein de context van dit
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proefschrift zijn ontwikkelt nemen deze beperkingen inraarking.

Een van de invalshoeken die zijn uitgewerkt betreft GPU lacage van niet-
rigide registratie. Hierbij wordt het vervormingsveld vaéa floating dataset gevormd
door kubische B-splines met controlepunten op regelmafigianden. De versnelling
van het algoritme wordt enerzijds gehaald uit het par@lei in de GPU, en ander-
zijds door de kubische B-splines op eféinie wijze te berekenen. Het is namelijk
mogelijk om een kubische B-spline uit een aantal lineaiterpolaties op te bouwen

voor 3D kunnen 64 directe samples vervangen worden dooe@ilie interpolaties)
13]. Aangezien lineaire interpolatie op de GPU ongeveenesnel is als het direct
samplen van de data levert dit een aanmerkelijk voordeeDepsimilariteitsmaats

die door ons registratiealgoritme gebruikt wordt dientéwdlgende vorm te kunnen

worden uitgedrukt:
_ ﬁ > e (AG). BED)) (0.3)
iel

Waarbij I de set van pixelposities ig,de bijdrage aan de similariteitsmaat per pixel,
A het referentiebeeldB het floating beeld, em het B-spline vervormingsveld. De
afgeleide naar de B-spline controlepunten ziet er als wotgt

(0.4)

_ ) B(Z)
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Hierbij staatc; voor een controlepunt en indéxvoor dek-de component in de vector
(de as). Het kennen van de afgeleide heeft als voordeel datféeientere optima-
lisatiestrategie benut kan worden, zoals b.v. quasi-Newt@ardoor de registratie
sneller uitgevoerd kan worden. De GPU implementatie bestetavee stappen; In de
eerste stap wordt het floating beeld vervormd, de contetadn de similariteitsmaat
per pixel bepaald, en het grédit per pixel. In de tweede stap wordt vervolgens de
afgeleide per controlepunt berekend uit de informatie ieeieste stap. Deze aanpak
leidt tot een snelheidswinst van ongeveer factor 50 tencbpzivan een rechttoe
rechtaan CPU versie.

Een andere registratiemethode die uitgewerkt is in ditfgabeift betreft de 2D-
3D registratie van vaten in fluoroscopie en CT beelden. Deaire toepassing van
deze methode is de registratie van hartkransslagadersdaéznvaten zijn namelijk
geen subtractie angiografie beelden beschikbaar, en dadsdde segmentatie van
de live fluoroscopie beelden niet triviaal. In onze aanpakwjden we dit probleem
door geen expliciete segmentatie van de fluoroscopie beeiltiee voeren. In plaats
daarvan passen we een vesselness filter op deze beeld@loer{gebruiken we
het resultaat daarvan direct in de voorgestelde similtmitaat, zie figuurl8. Vooraf-
gaand aan de registratie worden de bloedvaten gesegnibimetr CT dataset. De
gesegmenteerde vaten worden voor elke nieuweédpatansformatie geprojecteerd
op het vlak van de fluoroscopische beelden en daar wordt lgenve een afstand-
stransformatie op toegepast, zie figlilr 9. De similaritediat is het in-product van
het vesselness en het afstandstransformatie beeld. Ooeeeprmet gesimuleerde
en klinische data laten zien dat deze aanpak beter werkteldardtive closest point
(ICP) [15] methode.
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Figuur 8: Links: Rontgenbeeld van de hartkransslagaders. Rechts: Vesselness traatiéo
van hetzelfde &itgenbeeld.

|

Figuur 9: Links: Afstandstransformatie van de geprojecteerde hartkransslagaitede 3D
CT dataset. Rechts: Hetzelfde beeld gekwadrateerd.

4 Conclusies

De hier beschreven technische oplossingen zijn gezarkegeiijvalueerd in een drie-
tal concrete klinische toepassingen: 1) Het navigeren eakatheter op basis van
meerdere beeldinformatiebronnen tijdens de behandehngavterio-veneuze mal-
formatie (AVM) in de hersenen, zie figulir]10. 2) Het plannennerigeren van
een punctienaald op basis van diagnostische CT beeldergelijkertijd live fluo-
roscopische beelden, zie figdurl 11. 3) Het optimaal plaatseneen stent in een
vernauwing in een kransslagader, eveneens op basis vageravien plannen met
behulp van diagnostische CT beelden gemixt met live angfephe beelden, zie
figuur[12.

De algoritmes zijn hiertoe in klinische prototypesmpelementeerd, die door het
ziekenhuispersoneel zelfstandig bediend konden wordenevaluatie heeft plaats
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Figuur 10: Linksboven: Een MR beeld toont een arterioveneuze malformatie (AMegte
getroffen hersenweefsel (gele pijlen). Rechtsboven: Het live fluaptdieeld zonder con-
trastmiddel laat de voerdraad zien, maar niet de relatie met de vatentmozachte weefsels.
Linksbeneden: Het fluoroscopiebeeld gemixt met de 3DRA vatenlm@minde vasculaire con-
text toe aan de live data. Rechtsbeneden: Het fluoroscopiebeeld,Ri& @&tenboom en een
dwarsdoorsnede van de MR data. De MR dwarsdoorsnede staat altgdlgddhaaks op de
kijkrichting, en is gepositioneerd op het voerdraad uiteinde.
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Figuur 11: De pre-operatieve CT data (geel) en de intra-operatieve C-arm ceaebCT
data (rood) worden samen met het geplande pad (groen) getoamks: Lschuin aanzicht van
links. Rechts: Posterieur schuin aanzicht.

Figuur 12: (a) Gefuseerd beeld van cardiac CT data (rood) en lidatgenbeelden (grijs) voor
de navigatie in een chronisch totaal-geoccludeerd (CTO) vat. Het daehvan de katheter
geinjecteerd contrastmiddel (wit) penetreert de circumflex (LCX) niet,ijienet traject van
het vat wel zichtbaar blijft via de CT overlay. (b) De correspondeeegekromde MPR, laat
de CTO en retrograde vulling van het vat zien.
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gehad in een achttal ziekenhuizen in Europa, Noord-Amesikédzié. Tijdens vijf
internationale medische conferenties zijn er live puiscéa angiografische behan-
delingen uitgezonden vanuit de interventiekamer waarbipenoemde prototypes
werden gebruikt. De beschreven technolégigijn vervolgens gategreerd in com-
mercieel beschikbare producten (Philips Allura 3D-RA, nreter dan 500 exem-
plaren verkocht, en Philips Allura XperGuide), die in ziekeizen over de hele
wereld génstalleerd zijn.

In alle klinische toepassingen werden meerdere beeldaetaén tijdens de inter-
ventie gecombineerd in een coherent samenhangend gefusssd dat de klinisch
relevante gegevens op een behapbare wijze presenteerbdigestelde technische
oplossingen dragen hier in hoge mate aan bij, zowel betr@dfele intitieve visuali-
satie alsook de beperkte rekentijd van de algoritmes. Beige zeer van belang om
deze technieken routinematig in te zetten tijdens kliredobhandelingen.
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Chapter 1

Introduction

1.1 Background

Advances in medical scanning technology provide a widetspecof valuable and
complementary information about a patient’s pathologytamy, and physiology.
The signals that are produced by these scanners differ ierdiionality, scale, ex-
tent, and biological origin. The technological and climiadvances have brought a
tremendous growth in the use of radiological images durirgglast decades. The
optimal exploitation of this wealth of information in theirdktal treatment is a dif-
ficult task. Especially the combination of the informatiaoguced by the different
scanning techniques may be very useful, since the complamnyeinformation may
lead to a better insight, but also poses significant techhigalles.

Image guided interventions and therapy (IGIT) are beconmogeasingly popu-
lar in todays healthcare system. The minimally invasiveirebf these procedures
is often preferred over open surgeries because less trauthe fpatient’s body is
caused, which generally is associated with easier and fastevery. Interventional
radiologists and surgeons are also becoming more expedesmed comfortable in
performing these procedures. The minimally invasive weational clinicians use
instruments such as needles and catheters to perform tpeodigc and therapeutic
procedures, which are guided by imaging equipment.

1.2 Objectives of the thesis

It is the topic of this thesis to combine multiple sourcesmége data into a coher-
ent presentation for usage during minimally invasive treait, assuring usable and
cognitively adequate interaction by the interventiorialis

During minimally invasive procedures the clinician guidbas treatment based
on the real-time intervention image flow. Often there aready diagnostic im-
ages available, prior to the intervention, frequently alsed for treatment planning.
The integration of these pre-interventional data sourd#s e intra-interventional
images can lead to an improved information basis during timécal procedure.
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The pre-interventional data can provide complementarih@agical, anatomical,
and/or physiological data. Furthermore, the data fusitowal to project the pre-
operative treatment planning on the real-time image datéwcan provide a valu-
able roadmap to guide the procedure.

There are several constraints to the usage of several soofft@age data. First
of all, there are usually strict computation time restdns to calculations that are
being executed during the clinical procedure, since theepiais prepared for the
interventional treatment, and an expensive clinical teatheuipment are waiting.
Since many algorithms can only start to work after data han l@equired during
the course of the intervention, it is inevitable that thosegpams will occupy some
procedure time. Furthermore, it is of greatest importahaéthe interaction with the
computer is easy, and imposes the smallest possible aggsitain on the physician.
The clinician has to focus primarily on the treatment itsetid is often overloaded
with many stimuli, originating from a multitude of devicesterventional staff, and
pathological anatomy. Therefore, great care has to be dgivéime user interaction
and visualization of the fused data.

It is the objective of this thesis to present practical téchirsolutions to the topic
of peri-interventional image fusion. It should be possileitilize these solutions in
the clinical practice, without loss of general applicakgiliFurthermore, it is the goal
to demonstrate the value of the technical solutions by eynmdadhem in a number of
clinical applications.

1.3 Overview of the thesis

This thesis is presented in three main parts; The visu@izaechniques that were
used to accomplish efficient and easy to interpret imagdaglthre clinical interven-
tion are presented in pdit |. The registration methods #resto obtain the integra-
tion of the multi-modal data during the intervention areatizmed in partdl. Finally,
the clinical experience with the assembly of those techesaan be found in pdrtllil.
However, before we dive into the first part, the backgrounthose techniques and
clinical applications is sketched. Therefore, the thesigswith an overview of the
X-ray imaging techniques that are encountered in a caibat®n laboratory (cath-
lab) and their historical context in chapliér 2.

Then parfll begins with the topic of accelerating volume sy by using the
vast processing power of the Graphics Processing Unit (GPthaptefB. The ex-
amination of the various bottlenecks that are encounteiigdnithe GPU, has led
to an optimized rendering approach, using a double spapgiskj hierarchy. The
following chaptef# extends the volume rendering methocktd dith multiple three-
dimensional and two-dimensional datasets. This enabéefided representation of
multi-modal data, which is used in parfllll. Special attenthas been paid to main-
tain interactive frame rates, which is of utmost importafwrerisualization of image
data that is being used for interventional guidance. This @ancludes with chap-
ter[3, which describes the application of the earlier inticetl rendering techniques
to autostereoscopic displays. Such displays allow a vidgav@erceive depth with-
out the aid of external glasses. The challenge posed by ssiglaygs is the fact that
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they need the same scene rendered from a number of viewiitgpppssand therefore
impose a high load on the rendering system.

Part]] first provides a general context to image-based tregisn algorithms in
chaptef . This chapter also briefly describes registraiised on the mechanical
X-ray geometry parameters, which is always real-time aresdwt depend on land-
marks being present in the image. In order to achieve fastieleegistrations, a
prerequisite in order to use them interventionally, cheltexplores how the GPU
can be used to accelerate this task. This chapter espeioiallgses on the precision,
the implementation and the performance aspects. CHdptes8mts a new similarity
measure that especially has been developed for the rdmistiaf two- and three-
dimensional datasets containing the coronary arteriegsdt provides the validation
that has been conducted on this method.

The clinical experience that was gathered with these teciesi is presented in
partllll Chaptef® describes the clinical aspects of usimdfirmodality registration
and fused visualization in the roadmapping of intravasaiéices for neuroangiog-
raphy. The focus lies on the treatment of arteriovenousanatitions. Chaptdr 10
presents the approach that was developed to plan and guidgtggeous needle in-
sertions. This chapter especially describes the applicati this technique within the
embolization of paragangliomas (glomus tumors). The cdihapplication of image
fusion in the treatment of coronary artery disease is thie tofochaptefIIL. Finally,
chaptefIP concludes this thesis with a summary and dissussithe obtained re-
sults.

A design pattern, which was developed to manage many caigdirsystems in
large software packages, is described in appendlix A. Thigydepattern was used
in all the clinical applications that are presented in Qkaind aided considerably in
dealing with a vast number of coordinate spaces in a flexitdeti@nsparent manner.

Since the technical scope of this thesis is rather wide &ioimg both visualiza-
tion and registration aspects), there is not a separataerhdgnaling with the state of
the art. The related work is described instead in the resgechapters throughout
the thesis.

1.4 Major contributions

The major contributions of this thesis are:

e The introduction of a double space-skipping hierarchy t&J&iecelerated vol-
ume rendering, employing bricks and octrees. Since thigisol is tailored to
the bottlenecks found in the GPU, it helps to reach the maxirparformance,
especially when volume rendering large datasets that evghtrexceed the
memory available to the GPU.

e An analysis of the optimal resolution for rendering to ateososcopic dis-
plays. This analysis is then used in dynamically balancirggresolution to
achieve a balance between maximum detail and reasonalfiterpance.

e The in-depth exploration of the precision aspects of GPtklgtated B-spline
evaluation. Especially when the GPU is applied for genewappse image
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processing tasks in a clinical context, it is of highest imi@oce to know its
precision and numerical behavior.

e The application of GPU acceleration to elastic image regfisin. In order to
apply image registration during a clinical interventiohjsi essential that its
results are available within a limited time frame. The GPUederation helps
in achieving this goal.

e A novel similarity measure has been developed to register amd three-
dimensional vascular data. This method was deemed negesisee existing
methods did not perform well enough for the task of regiatethe coronary
arteries. The new approach was found to improve on this &skas been
demonstrated by the validation results.

e The evaluation of aforementioned techniques in the climicactice. The meth-
ods described in this thesis have been applied in variongaliinterventions.
The results have been reported in the medical literatureagralich have be-
come part of the state of the art.

e The development of a coordinate space management framewbik frame-
work allows to administrate many dynamically linked cooate spaces. Fur-
thermore, it removes the explicit conversion from the pangming code, and
therefore is less prone to programming errors.

The idea of the coordinate space framework was born duringcskion with
Jeroen Terwisscha van Scheltinga. Obviously, many peaple heen involved in
the clinical evaluation of the techniques. All other men&d points are the sole
work of the author of this thesis.



Chapter 2

Interventional X-ray

2.1 Angiographic X-ray

Throughout 1895 Wilhelm ConraddRtgen (1845-1923) was examining the exter-
nal effects of various vacuum tubes. During an experimeniNovember 8, 1895,
whereby a cardboard was blocking all visible light, he redia fluorescent effect on
a nearby cardboard, which was painted with barium platiane. This motivated
Rontgen to conduct a series of experiments, from which hewaied that the flu-
orescent effect was caused by a new type of radiation, wredieimporarily named
"X-rays’ [1L6]. It would be unjustified to attribute the diseery of X-radiation merely
to coincidence. Bntgen had planned to use the barium platinocyanide pagateti
board in a next series of experiments, and it would have hikely lthat he would
have discovered X-rays in those trials. In 190dnRyen was awarded the first Nobel
prize in physics for his discovery.

Already in December of 1895@dtgen produced the first human radiograph, by
imaging his wive’s hand, see figure P.1a. Within two monthRafitgen’s discovery,
Haschek and Lindenthal managed to demonstrate the blosdlgés a cadaver hand
by injecting a suspension of chalk and cinnabar (mercurfidg)lin oil ], see
figure[Z1b. A comprehensive overview of the consequensdegaling to modern
percutaneous coronary angiography is given by Méier [18].

2.2 Firstin-vivo catheterizations

In 1929 Werner Forssmann performed the first heart catzatem in a living hu-
man being; himselﬂﬂﬂO]. With the help of a somewhat relataccomplice he
anesthetized his own elbow and performed a cut-down on fiisde and inserted
a well-oiled ureteral catheter via the left antecubitahvetis aim was to insert the
tube for a pre-measured distance in order to reach the rigftricle. After walk-
ing down to the X-ray department in the basement with the tdegling from his
arm, he continued the procedure under fluoroscopy, withithefea mirror held by
his accomplice. However, because of the length of the catlnet was only able to
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(@) (b)

Figure 2.1: (a) Roentgen’s first human radiograph, made in 1895. (b) Firsti@ggphic
recording, taken from a cadaver by Haschek and Lindenthal in 1896.

reach the right atrium. He then made some radiographs asratary evidence, see
figure[Z.2. Forssmanns superior, the surgeon Professort8ack, was not amused
by Forssmanns experiments. His response was “Mit solcheststicken habilitiert
man sich in einem Zirkus und nicht an einer @amstigen Deutschen Klinik” (Tricks
like that qualify you for a circus and not for a leading Gernadinic). In the ensuing
row, Forssmann lost his job, but he shared the Nobel Priz&&aticine with Cour-
nand and Richards in 1956 for his ground breaking work imhmheterizatioHﬂS].

Charles Theodore Dotter can be credited for pioneering ¢he dif interventional
radiology. He was the first to describe flow-directed ball@atheterization, the
double-lumen balloon catheter, the safety guidewire, &ed‘d” tipped guidewire.
Percutaneous transluminal angioplasty was his landmanrkibation ]. Dotter’s
nonconservative way®(g, performing balloon angioplasty on patients that were re-
ferred explicitly for diagnosis only) hindered the accegt of percutaneous min-
imally invasive interventions, and the medical society a@mad reluctant to accept
the ideas of Dotter, until Andreas @tzig, a Zurich cardiologist, published the first
percutaneous transluminal coronary angioplasty in 1]7. [@runtzig invented the
miniaturized balloon-tipped catheter and developed tblertieue of coronary angio-
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Figure 2.2: The first in-vivo hearth catheterization, performed by Forssmann oséifrim
1929.

plasty, based on the work of Dotter. Restenosis and the meedgdeat interventions,
however, remained a severe limitation. This led to the dgwaknt of a metallic in-
travascular scaffold, known as a “stent”, which is permayeuiaced at the stenotic
location [Zk] (seee.qg, figure[2.3). Charles Dotter already introduced the corscept
of percutaneous arterial stenting and stent grafting bgipgathe first percutaneous
“coilspring graft” in the femoral artery of a dog. The firstrhan implantation of
coronary stents was performed by Ulrich Sigwart and JacBuesin 1986@4].

Figure 2.3: Example of a modern cardiac stent (Boston Taxus Ex@egs x 28 mm) and
guide wire.

2.3 The X-ray C-arm

Before the introduction of the C-arm system, the only padbsitio perform live X-
ray acquisitions during surgery was the fluoroscope. Thisal@and-held device with
a fluorescent screen, virtually unchanged since 1896, wihryapoor light intensity.
To compensate high X-ray doses were used, leaving the supgswly protected in
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Figure 2.4: The first X-ray C-arm system: the Philips BV20.

the X-ray beam. More detailed studies required radiographffim to be developed
during the surgical procedure.

The first C-arm was developed together with the image infiengil) by the Ger-
man Philips Medical Systems organization in the early 1@1& After a more
robust system was developed, mainly by Jacques Hoogevete éhilips Medi-
cal Systems factory in Eindhoven, it was commercially redehin 1955 under the
name BV20 (“Bildversarker” or “Beeldversterker” with a 20 mA X-ray tube), see
figure[2.4. The bow could rotate in a propeller-fashion mosenand slide through
a sleeve, providing a large degree of freedom in selectingpgegion angle. This
mechanical approach to reaching rotational freedom resnainhanged until present
date. The Il of the BV20 projected the intensified X-ray imalyectly on a pair of
goggles, that could be viewed by one person, often in an awkp@sition. In 1958
the BV20 was equipped with an industrial TV chain insteadhef goggles, which
made the X-ray image more accessible. In this way the whalgical team could
follow the X-ray image, leading to better informed and fasigerations. This II-TV
C-arm can be considered the first modality that enabled irgagked interventional
treatment on a routinely basis.

After these two revolutionizing innovations a period of keimn followed. Fixed
mounted larger C-arms next to the mobile ones, brought maehamical stability
and reproducibility. The components of the imaging chainengradually improved,
and the arrival of digital image processing enabled digitedlge enhancement and
archiving. However, the essential design of the C-arm reethunchanged until the
arrival of the flat detector (FD), which replaced the Il. 8edtate digital radiogra-
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Figure 2.5: An intervention being performed, using a modern flat detector C-artersys

phy detectors, commonly known as flat detectors, emergédgiisre the turn of the
millennium (figure[2.5). This new generation of digital ineadetectors contains a
thin layer X-ray absorptive material combined with an elecic active matrix ar-
ray. Principally two types exist; the indirect conversiofiray scintillator-based)
and direct conversion (X-ray photoconductor-based) t)ﬁ]; The production of
the flat detector bears a lot of resemblances with the praguof micro-chips and
LCD displays, and was facilitated by the development of-eff&ctive production of
large LCD displays. Studies have shown that the FD perfoupsrgor in terms of
X-ray dose efficiency and image quality expressed as DeeeQuantum Efficiency
(DQE) [ﬁ-@]. Furthermore it lacks the pincushion imagédweation and sensi-
bilities to external magnetic fields that were characterfstr the 11 systems. During
clinical interventional treatment also the smaller forrotéa of the detector is an ad-
vantage in the already crowded intervention room. The mafirinvasive clinical
applications that are presented in this work in chapfdr€l®nt{ 11 are based on the
live image guidance using this type of fixed mounted flat dete€-arm equipment.

2.4 3D reconstruction

2.4.1 X-ray attenuation

Suppose we have a thin piece of uniform radiopaque matdrthlaknessdz. From
an X-ray beam ofV photons,N,;s photons are absorbed by the material. The phys-
ical effects leading to the photon absorption are explainetttail ine.g, ﬂﬁl]. The
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A A A A A Fourier

Transform
e

slice s(k, )

projection p(x)

Figure 2.6: The projection slice theorem.

amount of absorbed photons is linearly proportional to tmewant of entering pho-
tons, the thicknesdxz and the radiopacity of the material, which is expressed dy it
linear attenuation coefficient.

dN = —Ngps = —N - - dx (2.2)

When refraction and emission effects are disregarded, thatigin above can be
easily extended to an X-ray beam traveling through noneumfradiopaque material
by integrating the equation over The resulting formula is called ttigeer-Lambert
equation.

- (z') dx’
NeNg-e " (2.2)

2.4.2 Filtered back-projection

The initial computed tomography (CT) scanner, as introduneGodfrey Hounsfield
in the early 1970s, was based on the two dimensional projestice theorem. This
theorem states that the one-dimensional Fourier transédriime parallel projection
of a functionf(z, y) is equal to a slice of the two-dimensional Fourier transfofm
function f (z, y), whereby the direction of the slice is perpendicular to tiheation of
the projection E.g, when we project along thg-axis (see figure216), the projection
can be written as:

p@) = [ Fewdy (2.3)
The Fourier transform of (x, y) is
Flloky) = [ [ ) eniehesob azay (2.4)

— 00 —O0
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The slices(k, ) is then

= /f(x,y)dy e 2mi@ha) gy (2.5)
_ /p(m) 6727ri(:ckz)dx

and that is just the Fourier transformgfz). The projection-slice theorem can also
easily be extended to higher dimensions.
The set of projections along straight lines is known as th@oRdransform:

Rifl(ass) = [ fla(o).u(t) de
- (2.6)
= / f(t- (sina, —cosa) + s - (cosa, sin ) dt

— 00

A computationally efficient inversion algorithm for the twdimensional Radon trans-
form is the so-called filtered back-projection, introdudsdFeldkamp, Davis and
Kress EIZ]. This algorithm takes the projectioR$f|(«, s) as input, applies a ramp
filter to them, and ‘smears’ the filtered projections backrdkeir lines to produce an
image. According to this algorithm, the reconstructed eglat any given locatior
can be expressed as

1

2m
f(@) = E/o p*(a, (cosa,sina) - &) da (2.7

wherebyp* denotes the ramp filtered projections.

2.4.3 Cone-beam reconstruction

In order to produce a complete and exact reconstruction émme-beam projections,
the trajectory of the C-arm has to satisfy the condition ttsaorbit intersects with
every plane through the reconstruction spﬁb |{__3b 34]. dragectories, however,
are not very practical in a clinical setting. Therefore apmating three dimensional
reconstruction techniques have been developed, using@emlar trajectories of
at least 180 [@], see figurd_2]7. In order to compensate for the variationthe

angular speed of the C-arm, every projectignin equatior 2.7 is pre-multiplied by
a weighting factorf. This factor is obtained for a projectiarby taking the anglex
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Figure 2.7: Circular C-arm trajectory for cone beam reconstruction.

between the normat of the previous projection — 1 and the following one + 1,
and dividing it by the overall angular range of the trajeyi@].

a; = L(Mi—1,i41)

. (2.8)

1
N 2.

M=|8

Il
s

(2

Since the late 1990s these techniques have been appliethtoamwial |lI-based C-

arm systemslﬂ@S]. Due to the geometrical distortionsthedmage signal re-
sponse properties of the Il along with the limited samplinthe rotational trajectory

the 3D reconstruction was mainly limited to objects withth@pntrast in radiopacity,

see figuré ZJ8. In case of 3D imaging of the vasculature thie tdgtrast cone beam
reconstructions are commonly called ‘three-dimensioot@tional angiography (3D-
RA)’ and for reconstructions of non-vascular structurestgrm ‘three-dimensional
rotational X-ray (3D-RX)’ is often used.

The image intensifier suffers from a pincushion like defaioraof the image,
and is also sensitive for influences from external magnediddi(such as the earth
magnetic field). With the introduction of the flat detectoesh geometric defor-
mations have been resolved. The ability to image also lowirashstructures has
significant clinical benefits. Bone tissues possess X-it@yaation values up to 2000
Hounsfield units (HU), and iodine contrast medium can evewchre3000 HU. The
attenuation value for air is -1000 HU, for fat around -50 Hak, dater 0 HU and for
soft-tissue around 40 HU. A fresh bleeding in the brain lrethe range from 10 to 60
HU, which means that a considerable improvement in contesstiution is needed
to provide a meaningful image in this range. The imaging of ¢ontrast structures
through cone beam reconstruction on flat detector C-arnesyshas become avail-
able amongst others by the following improveme@ I[Eb 40]:
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@) (b)

Figure 2.8: (a) 3D cone beam reconstruction of a brain Arteriovenous Malformat{@kd/).
The blood vessels can be made visible by the intra-vascular injection ofeiadintrast
medium. (b) A slice from a cone beam reconstruction, using an Il basadnCsystem.
The high contrast structures, such as the skull and the vasculaturd,ilth iodine contrast
medium, are well visible. The structures with low radiopacity, such as tii¢issue structures
and air, contain a lot of noise.

Figure 2.9: (a) Soft-tissue reconstruction of a head phantom without calibration. (&) W
calibration.

e Maintaining a constant voltage and current on the X-ray tabd thus produc-
ing the same X-ray spectrum throughout the semi-circularement.

e Acquiring more images (between 300 and 620 images) durigemmi-circular
trajectory.

e Calibrating the flat detector; For every detector pixel théngffset and the
linear and non-linear behavior is measured individuallg icalibration proce-
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dure. During image acquisition the measured signals areced, using the
calibration data, see figure 2.9.

e Estimating the pixel intensity for unobstructed radiatfonly traversal through
air) of the detector pixels.

e X-ray radiation does not only travel in a straight line; ecfran is scattered by
the imaged materials (such as the patient). The contribufdhis scattered
radiation to the image is estimated and subtracted from #esored image.

Chapter§ B and 4 deal with the efficient visualization of (agst others) 3D an-
giographic datasets that have been obtained by the dedarilvee-beam reconstruc-
tion technique. The clinical applications presented inptba[® and 10 are based
on the registration of a pre-interventional dataset wittbaecbeam reconstruction
that has been obtained peri-interventionally. Especialyfact that the cone-beam
reconstruction can be performed peri-interventionallthwihe same equipment that
is being used to perform the minimally invasive procedurefigreat clinical value,
since it reliefs the patient from being transported to a CM& scanner and saves
valuable procedure time.
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Fused Visualization
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The intra-operative setting and dynamics are very diffefimm a diagnostic en-
vironment, which reflects on the requirements that are irgpam intra-operative
visualization. The viewer of intra-operative images isi¢gily not sitting behind a
desktop workstation, but mostly standing at the table sigie\the patient lies, which
limits the possibilities to interact with the workstatioorsiderably. Also his primary
focus is of course on the patient and the treatment couresrrénan on the images.
Even though the intra-operative images are undoubtedli@fjteatest importance
and very often elementary to the procedure, especially fomnally invasive treat-
ment, they are also just one of the many stimuli that are ptedeto the physician
during the intervention. Also of importance is the oftenited time that is available
to the physician to interpret the intra-operative imagepeeially in stress situations.

The factors mentioned above lead to the demand for vistialimathat are easy to
interpret and manipulate, without compromising on the aiigation of the clinically
relevant aspects. This rules aug, the popular visualization methods for fused data
sets, such as side-to-side or checkerboard visualizafi@Daross-sections, since
they require too much interaction and are too time consurngterpret. Rather a
3D visualization is needed. This is especially challendorgused visualizations of
multiple data sets, since the overwhelming amount of dadstéo clutter the image,
making it difficult to understand at a single glance, and slawwn the rendering,
which hinders the interactive manipulation.

In order to overcome these hurdles, the following sectiascdbe fast volume
rendering (chaptéil 3), our approach to reach an easy tpietdused visualization of
vascular, soft-tissue and live X-ray data (chapler 4), &edrteractive visualization
of volumetric data on autostereoscopic displays (chapter 5






Chapter 3

Fast Volume Rendering

This chapter is an extended revision of the following paper:

e Daniel Ruijters and Anna Vilanova. Optimizing GPU Volume Reridg. Journal of WSCG,
Volume 14, Number 1-3, January 2006, Pilzen (Czech Repubiic)9-16

3.1 Introduction

New developments in medical imaging modalities, numesgallations, geological
measurementgtc lead to ever increasing sizes in volumetric data. Thetgtidi vi-
sualize and manipulate the 3D data interactively is of grepbrtance in the analysis
and interpretation of the data. The interactive visualireof such data is challeng-
ing, since the frame rate is heavily depending on the amdutfita to be visualized.
Inherently, the demand for faster visualization methodsgvigys existing, in spite of
hardware innovations.

An established method for fast and interactive volume rendgeon consumer
hardware is GPU-based texture slicihg/[1-8]. Although #giproach performs very
well compared to CPU-based algorithms, due to the benetita the parallelism
available in the GPU pipeline, it can be accelerated sigmifly by taking into ac-
count the various bottlenecks that are encountered in yghgrs hardware. Every
individual bottleneck has a different optimal data churdesand data throughput.
In this chapter, a novel approach to accelerate GPU-badatheaendering is pre-
sented, allowing to tailor and balance the load on the iddigi bottlenecks to reach
an optimal exploitation of the graphics hardware power.

3.2 Related work

The first rendering methods using the 3D texture capalslitiethe graphics hard-
ware were proposed by Cullip and Neumahh [3], AkeBy [1] ardbi@l et al. [IZ].

Essentially these techniques consist of drawing polygehgh slice the volume in
a back to front order. The data set is mapped as texture iafiwmon the polygons

19
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using tri-linear interpolation. The successive polygoreslkdended into the existing
image.

Bricking is a technique to divide the volume data set intakts, called brickdﬂl,
@]. It can be employed to deal with data sets exceeding thiéahle texture mem-
ory. The bricks have then a size that is equal to or smaller tihe size of the texture
memory, and are loaded sequentially from main memory in¢otéixture memory
while rendering. However, this leads to significantly lodrame rates, since the bus
architecture, connecting the graphics hardware to the maimory and CPU, proves
to be a major bottleneck. Toregf al. [IE] propose a bricking technique that allows
skipping empty regions. Their method, however, requires textures to be gener-
ated for every change of the transfer function, which is timesuming for very large
data sets.

Texture compression can help to fit the entire volume in thiamemory, and to
alleviate the bus bottleneck. However, all presently avdd compression methods
supported by graphics hardware (S3TC, FXT1, DXT1, V&) are limited to lossy
8-bit RGB() compression, which make them unsuitable for the compyessi the
(often 12- or 16-bit) scalar values found in medical datal #nerefore they are not
used here. Further, Meissner al. [6] show that the lossy compression algorithms
severely reduce the image quality. Wavelet compressiopragmosed by Guthet al.
[@] is a promising technique, but there not all parts of tbleimne are rendered at the
highest resolution.

Not rendering all parts of the volume in the highest resolupossible is a way
to reach higher frame rates, as demonstrated by La¥lak [@], Weileret al. [@],
Boadaet al. ] and Gutheet al. @]. This is particularly suited to increase the
render speed for perspective projections in a small view; facusing on a detail of
the volume. However, orthogonal projections of the entakime in high resolution
view ports, as is common in medical applications, can ondjipirom this technique
at the cost of the image quality.

Space-skipping and space-leaping are techniques to eateel®lume rendering,
that originate from ray-casting methods, seg, Levoy [9], Zuiderveldet al. [10]
and Yagel and Shi__[_il]. It is based on skipping empty parthefblume. The idea
of space-skipping can be applied to texture-mapping volteneering as has been
shown by Westermann and SevenicH [12].

The octree is an established multi-level data structurerwdesaling with voxel
volumes, which has been used in numerous different apjitatE.g, Srinivasan
et al. @] apply an octree structure in volume rendering. Ordreard Moller [@]
demonstrated the benefits of using adjacency informatigpliaiting volume render-
ing.

Parkeret al. have combined bricking and multi-level data structureadoeler-
ate CPU-based iso-surface ray-tracing of volume data setaudti-processor plat-
forms and clusterﬂsbﬁl]. Grimet al. have applied a two-staged space skipping,
based on bricking and octrees, combined with gradient og¢hid CPU-based ray-
casting [[52].

Roettgeret al. [Iﬂ] describe a GPU-based pre-integrated texture-slirinfyiding
advanced lighting. The authors also describe a GPU-bagedaging approach with
early ray termination. Kiger and Westermanh| [8] propose a method to accelerate
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volume rendering based on early ray termination and spepgiag in a GPU-based
ray-casting approach. The space-skipping addressesdtegization bottleneck, us-
ing a single octree level only.

Here, some of the techniques cited above are combined ttesateGPU volume
rendering on a single workstation, using off-the-sheltinare. Often it is found that
acceleration of volume rendering has been treated as alaingwblem to solve.
The approach presented here rather focuses on the individtttenecks that are
encountered while performing volume rendering, and tahlerdifferent techniques
to address specifically those bottlenecks.

3.3 Volume Rendering

Volume Rendering (also known as Direct Volume Rendering)risethod for visual-
izing volumetric data. The volumetric data assigns opteaperties, such as color
and opacity, to every point in the continuous three dimeraispace. The Volume
Rendering process then consists of following the travestahys of light through
this three dimensional space, see fiduré 3.1. This is donedlyating the volume
rendering equation along the ray, as described by Ka@h [53

7 — ?T(r’)dr’
i= /C(:C) e ! dx (3.1)
0

Herei represents the resulting color of a rayy) is the emitted color at location,
andr(x) the light absorbtion at a particular location.

screen

volume

Figure 3.1: An illuminated scene; a number of rays of light pass through the voluntheon
screen.

The volume rendering equation can be approximated by thefivlg summation![5]:

N n
i= Z(an Cn * H (1—ap)) (3.2)
n=0 n’'=0

wherebyeq,, denotes the opacity of the volume at a given samplendc,, the color
at the respective sample.
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This summation can be broken down M iterations over the so-called over-
operator|f5|4], whereby the rays are traversed in a back td &naler:

Cn+l =Qp-Cp+ (1 - an) -Chp (33)

HereC,, denotes the intermediate value for a given ray. Afteiterations,C'y rep-
resents the final color of that particular ray.should be chosen such that every voxel
is at least sampled once (we use two samples per voxel). &thatpbha blending,
offered by DirectX or OpenGL, can be used to implement the-operator.

The summation can also be evaluated from front to back bygutia under-
operator:

Cm+1 = (1 - Am) R e Cm (34)
Am+1 = (]- - Am) C Oy t+ Am
Since the ray is traversed in the opposite direction, whenpawing to the over-
operator, indexn corresponds t&v —n — 1 for ¢,,, anda,,,. Again, afterV iterations
C =N represents the final color of the particular ray. When neglgatiscretization
issues, the over- and under-operator should deliver the sasult for any given ray.
It should be noted that whe#,,, goes to 1, any consequent: anda,,,» withm’ > m
do not contribute to the ray color anymore. Aray is then saltktsaturated whes,,,
approximates 1. In early ray-termination, this effect ipleiked to stop evaluating
samples that do not contribute to the final image, and in tlaig the computation
time is reduced.

display

focal

textured
slice

Figure 3.2: Volume rendering involves the evaluation of the volume rendering equatiog
the rays, passing through the pixels of the display. The usage of tediced means that the
rays are not evaluated sequentially. Rather for a single slice the contribofitine sample
points to all rays is processed.

Equation[(3:B) can be evaluated for all pixels in the framiégsimultaneously,
by using a set ofV textured slices, containing the slab data, see fiurés 3Bah
In iterationn, the textured slice: is then blended into the frame buffer, under the
appropriate translation, rotation and perspective. Whetké slices are processed
in a back-to-front order, from the perspective of the viewAdter each iteration, all
pixels in the frame buffer represent their respective value.|[_€_§5].
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(@) (b)

Figure 3.3: (a) A volume rendered data set, with large intervals between the textured.slic
(b) The same volume rendered data set, with a small distance betweertthredsslices.

3.4 Interpolation

When this method is applied to voxel data, the discrete voxt damples have to be
mapped to a continuous optical parameter description @etlimensional space. The
optical parameters consist of a color and opacity componEm color component
c is typically expressed as a red, green and blue tuRl@®), and the opacity as a
single valuea. There are essentially two methods for mapping the discedéar
voxel samples to the continuous optical parameter degmmipt

e The scalar voxel data is interpolated to a continuous scscription, using
some kind of interpolation function, such as nearest neighbinear or cubic
interpolation. Then a transfer function is applied, magpiine scalar voxel
range to optical propertiese., color and opacity€.g, in the form of a lookup
table).

e The transfer function can also first be applied to the scasarekte voxel sam-
ples. Then the interpolation to the continuous three dinogias space is per-
formed to the optical parameters.

The voxel data consist of a three dimensional array on a umifgrid containing
discrete values. The array can be regarded as a set of wetidihée impulses, at reg-
ular intervals (the interval is constant in each directlmut,might be different for each
individual axis). Shannon’s theorem states that if theinagsignal was bandwidth
limited, and it was sampled with at least twice the highe=fdiency that was present
in the original signal (Nyquist rate), it is possible to ethaceconstruct the original
signal. In order to perform such an optimal reconstructienget of sampled data (ar-
ray of dirac impulses) has to be convolved with the sinc fiamcff () = sin(z)/x)
(see figuré 3J4C). For a more in depth discussioresgge[56i].
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Figure 3.4: One dimensional versions of the reconstruction filters: (A) the rect, f(Bgrthe
hat filter and (C) the sinc filter

Unfortunately a convolution with the sinc function cannet frerformed on the
graphics hardware, and therefore would cost too much paebce. Two convolu-
tion kernels can be used on the graphics hardware: the ractida, and the hat
function. A convolution with the rect kernel (see figlirel 3)4drresponds to near-
est neighbour interpolation, and a convolution with the keahel (see figure_3.4B)
corresponds to trilinear interpolation. Modern consunrapgics hardware provides
very efficient nearest neighbour, bi- and tri-linear intdgtion. Tri-linear interpo-
lation provides clearly a better image quality, as figurd shéws. However also
tri-linear interpolation produces artefacts, since theesponding Fourier transform
is not bandwidth limited and higher order frequencies leadliasing. An even bet-
ter result can be achieved using cubic interpolation|[5[], WBich also can be GPU
accelerated [13, 59].

Figure 3.5: Nearest neighbour and tri-linear interpolation

3.5 Pre- versus post-lookup

When voxel data originates from techniques like MR, CT or 3E&tional angiog-
raphy, the subject of interest is typically to be found withi certain range of voxel
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Figure 3.6: (a) Histogram and transfer function, (b) distribution of discrete values fer p
lookup, and for (c) post-lookup

values. A transfer function could make this range visibld hite others, and thus
make the subject of interest visible. A transfer functiomgimialso enhance or sup-
press certain properties of the imageg, contours enhancement).

The transfer function can be performed before interpaigtiire volume (see sec-
tion[3.4), which is called pre-lookup, or after the intetan, known as post-lookup.
Pre-lookup simply involves looping over all voxels and peniing the transfer func-
tion for every voxel value. Post-lookup is somewhat more gicated. It means that
whenever an interpolated value is used in the volume remglriocess, first the orig-
inal voxel values are taken and interpolated (ugirgy nearest neighbour or trilinear
interpolation), and then the interpolated value is the irfiputhe transfer function.

Figure[3.6a contains an example of a transfer function. Teg graph repre-
sents the histogram of the voxel values present in a certdime. The solid black
line represents the transfer function. In this particulasecall voxels with a value
within the range of the first part (A) are mapped to 0, for thddie part (B) a linear
lookup is performed and for the last part (C) all values arepea to 1. Figure_3l6b
demonstrates for a pre-lookup, how the discrete dynamiperéndistributed over the
middle part. Figur€3l6c shows that for a post-lookup therdie dynamic range is
distributed over the entire range of the function (After, all that case the transfer
function is only performed after the interpolation step) might be obvious that if
the bit depth of the voxel data is higher than the bit deptiefttansfer function, the
pre-lookup method has a richer dynamic range, meaning tthiaes a bigger set of
visible voxel values. However the post-lookup method wilhguce more accurate
spatial results.

Why does the post-lookup method produce more accurate kgetigts? Assume
a binary transfer function like in figufe_3.7a. Now considdingar interpolation
between two adjacent voxel values, one has valuie figure[3.Ta, the other has
value B. If the pre-lookup method was used, valdewill be mapped to 0, valué3
to 1, and the linear interpolation will produce a graduald#r) transition from 0 to 1
for the space between the voxels, as is shown in figuie 3.7b top

For the post-lookup method first a linear interpolation frdnto B will be per-
formed, and then on the interpolated values the transfetifumwill be applied. This
will result in a binary transition, whereby the boundaryl\wi close to the voxel with
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(@) (b)

Figure 3.7: (a) A binary transfer function transfer function, (b) pre-lookup (top) gouct-
lookup (bottom) interpolation between two adjacent voxel values

value 4, as depicted in figule_3.7b bottom. This is the result we welzkct.

(b)

Figure 3.8: A volume displayed with the same transfer function using (a) the pre-loakdip a
(b) the post-lookup method

As mentioned earlier, the post-lookup method is perfornitd aterpolation. In
practice that means that post-lookup is performed in theerasg step in the render
pipeline (see sectidn 3.6). The interpolation as well aptist-interpolative transfer
function in the form of a lookup table can be easily perforrbgch GPU program.
Note that pre-lookup and post-lookup can be used in additi@ach other.

3.6 Bottlenecks

The rendering pipeline is the general process flow that isghesed to depict virtual
three dimensional scenes. Such a scene consists of flat gemherimitives, such
as points, lines, triangles and polygons. The renderinglipip can be implemented
in hardware to a various degree[[60].
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Figure 3.9: The graphics hardware pipeline and its bottlenecks (adapted from [Gityht
grey: memory units, dark grey: data structures, blue: processiritgued: bottlenecks.

The process of rendering an image involves traversing atiifives in order to
transform their scene coordinates to camera coordinateghfing model is per-
formed on the primitives, and the results are stored as g@®owvertex. The next
step is rasterization of the primitives. Rasterizationveots the above mapped prim-
itives into fragments. Fragments correspond to pixel iocatin the frame buffer,
and contain some properties such as color, texture codedinand depth (z buffer).
A fragment is one-to-one associated with a pixel. Beforadpeiaced into the frame
buffer, each fragment may be subjected to a series of tedtmadifications. These
include stencil test, depth test, and blending. Finallg,ttho dimensional image that
has been rendered in the frame buffer, is displayed on tleescr

Although textures might have three dimensions (thus voldata), the described
rendering pipeline does not allow the direct rendering dintric objects. All
geometrical primitives are flat. The rendering pipeline eheoffers the possibility to
calculate an intersection with a flat primitive in the voludega, using interpolation.

Figure 3.9 illustrates the graphics pipeline, employed¥BitJ-based volume ren-
dering @]. Here the most important points in the pipelin@t tresult in a bottleneck
are discussed.

The bus - The volume data has to be transferred over the bus from themsysem-
ory into the graphics card memory. Since this is the slowadtqf the entire
pipeline, these transfers have to be as few as possible.

Triangle throughput - The triangle throughput is mainly limited by the vertex shad
ing and triangle setup phase. A straight forward implemé@nteof texture-
mapping volume rendering would involve only few trianglest techniques
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for space-skipping may increase the amount of trianglesiderably. If the tri-
angle count becomes too high, this will become a limitingdaéor the frame
rate.

Rasterization - When performing volume rendering based on texture slicihg, t
vast majority of the pixels on the screen are accessed Hauttipes. Space-
skipping techniques may be used to reduce the amount ofgixéle accessed,
but this also increases the triangle count.

Texture cache size -Texture lookup is one of the more time consuming operations
performed during the rasterization step. When the textuserithe cache,
these lookup operations will be faster.

Fragment shader - Fragment shader programs impact the duration of the raateri
tion step. Simple fragment programs, such as applying aujpdéble, gen-
erally do not limit the frame rate, however more complex afiens, such
as specular Iightingﬂ(ﬂ 7], multi-dimensional transfencftionsaﬁ%iz] or pre-
integrated renderingl[4] B, 7], can form a bottleneck. Eislgdragment pro-
grams that perform multiple texture lookupsd, on-the-fly gradient calcula-
tion for specular lighting) are relatively slow.

3.7 Method

When performing volume rendering usually only a fractionlb¥exels actually con-
tribute to the final image, since a relatively small amounta{els are of interest and
another amount of them are occluded. Furthermore, datasetsften sparse. In
3D medical data sets (obtained byg, ultrasound, CT, MR or rotational angiogra-
phy [63/64]) the anatomical structures of interest encapsd in the data sets occupy
only a part of the total data. Typically 5% to 40% of all voxetstain visible data,
and even highly filled CT or MR data sets rarely exceed 55%.e&afly vascular
data sets can be marked as sparse data sets, since vessétsttwrir tubular form,
occupy only a small percentage of the volume (1% to 8%).

This chapter seeks to reach the maximum benefit in explastigping void parts
of the volume (space-skipping). The novelty that is intreeltl lies in dividing the
space-skipping in two stages; a course division using mickfigure[3.10a) and a
finer one using octrees (figure_3110b). These steps are basad analysis of the
bottlenecks encountered in the graphics pipeline wheropaifig texture-mapping
volume rendering. The first stage, bricking, is chopping tbkime in so called
texture bricks. The bricks are loaded into the video mentorgerve as data for the
volume rendering algorithm, which is executed by the GPWe bhicks address the
bus- and texture cache size-bottleneck. To further allevtze load on the fragment
shaders, early ray termination is applied to each bricktemdilly. This benefits
especially highly-filled data sets. The second stage is@yma an octree within each
brick. The octrees address the rasterization bottleneskvifAbe demonstrated, the
two stages have to be balanced, because lifting one batkenay overload another
bottleneck é.g, rasterization bottleneck versus triangle throughputiéoeck).
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(b) (©)

Figure 3.10: The same volume fragment, rendered with (a) bricking cubes visiblecti®e
cubes visible (note the various cube sizes) and (c) both bricking aneleoctibes visible.

The role of the transfer function in volume rendering is tqrttee scalar voxel in-
formation to the optical properties€., color and opacity) [62]. The above described
approach is implemented such that the flexibility to charmgettansfer function at
run-time is preserved. This offers the possibility to foondifferent scalar ranges in
the volume, without lengthy calculations. To accomplisis,tthe unmodified scalar
voxel values are stored in the brick textures, and a fragisteader program is used,
to lookup the RGB: values after interpolation of the scalar voxel values has lper-
formed. Since the octrees depend on the visibility of tha,datd thus on the transfer
function, they have to be recomputed when the transfer immcthanges. This can
be done on the fly, as will be explained below.

3.8 Bricking

As mentioned in section 3.2, the voxel volume can be divided chunks, called
bricks, in order to cope with voxel data sets sizes exceettiagize of the texture
memory of the graphics hardware. Note that these bricksagothe original scalar
values of the voxel volume, thus the values before applyiegransfer function. This
enables us to change the transfer function on the fly, sin@nafer function change
does not require creating new textures.

To obtain a correct interpolation at the bricks’ boundaiteis necessary that
the data held by adjacent bricks overlap. The overlap dependhe convolution
kernel used for interpolation [57], and should correspanktrnelsize — 1). For
nearest neighbor interpolation that means that no oveslagéded, since the width
of the kernel is one. For tri-linear interpolation the oegrishould be one voxel in
every direction (for other kernels the overlap may even lbgeld. Pre-integrated
rendering|[4, 5,17] or the on-the-fly calculation of grad&erequire the overlap to be
increased by another voxel in every direction. For bricks®ofoxels and an overlap
of n voxels, the memory overhead is approximat@y /b) - 100%.

The bricks are loaded into the video memory as 3D texturesnyMpaphics
cards require 3D texture sizes to be a power of 2 in every tilirec If the volume
dimensions do not divide evenly into brick dimensions, @ithn additional layer of
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partially empty bricks should be added in each directiospoaller rest-bricks should
be used.

When the amount of data in the textures exceeds the availttieré memory,
textures are swapped between the main memory and the tertemeory. If a re-
guested brick is not resident in the texture memory, it isi@hfrom the main mem-
ory, replacing resident textureE[BO]. In most OpenGL impdatations resident tex-
tures are swapped out on a Least Recently Used (LRU) base.

Traditionally bricking in texture based rendering is usethé¢ able to render data
sets which exceed the size of the texture memory of the gragtardware. The
bricks are then chosen to be as large as possible, and thegauentially loaded
from the main memory into the texture memory. This impliest flor each frame the
entire volume data is transferred over the bus.

In the presented approach, however, considerably smaitde §izes are chosen.
The smaller the brick size is, the bigger is the chance ofkbrlzeing completely
void after applying the transfer function, and void bricks ribt need to be drawn.
Therefore, once they are swapped out of the texture meniay,are never reloaded
into the texture memory, and thus the bus bottleneck isiatied.

Bricking is even applied to volumes that completely fit inke ttexture mem-
ory to improve data locality, which will result in less cadinashing on the graphics
card E‘B ]. On the other hand smaller bricks could intoeda larger overhead
due to the overlap needed for interpolation. Thus the optimek size needs to be
defined depending on the available texture memory, optiexalite size (see section
[3:6), nature of the data set, overhead due to overlap, armbtisraints posed by the
graphics hardware.

3.9 Early ray termination

To be able to perform early ray termination at all, the volums to be traversed in a
front-to-back order. This can be done by evaluating themeluendering integral in
discrete steps, using the under operator, see equiation 3.4.

Before a brick is rendered, early ray termination is appleeis destination pix-
els. This is tested by executing a fragment shader progrdrite \@rawing a solid
bounding box around the brick with back face culling swittlem. The fragment
shader program writes the maximal value in the depth buffiesdturated ray: [ﬂ 8].
When slicing the brick texture the early z-test will preveny dragment operations
to be executed for those rays, reducing the load on the izetien and fragment
shader bottlenecks. Early ray termination is only perfairance per brick, and not
more often é.g, for every octree node or every sample) because the oveihead
volved (changing fragment shaders, performing the testildvotherwise annihilate
the benefits.
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3.10 Octree

By not rendering the void bricks, the load on the rasterabottleneck is already
reduced. The load is even further reduced by applying ostré&svery brick pos-
sesses its own octree. Every octree node corresponds tooa quant of the voxel
volume, which can be divided into eight parts, correspogdinthe child nodes (see
figure[3.11). The octree is kept in main memory. It only ddmsithe geometry of
the visible data. The actual voxel data is to be found in thekliextures.

level O

level 1

™~
\]\
1

N
N

level 2

Figure 3.11: An octree division, and its tree

For tri-linear interpolation, let a cell be defined as a cubith\adjacent voxel
values assigned to its eight corners. For every positiohimithe cell an intensity
value is defined as the tri-linear interpolation of the cowvedues. Therefore a cell
can only be completely void if its eight corner values are plately transparent
(o = 0) after applying the transfer function. This definition casiBebe extended
to any given interpolation kernel, by setting the size of latoe(kernelsize — 1)3.

Every octree node carries a variable describing the ratfovisible data to total
data within its cube. At the final level of the octree, everg@oepresents uniquely
one cell, and is considered either completely filled= 1) or void (r = 0). Every
higher octree level nodes ratio can be calculated by avegdlye ratios of its children.
This calculation only needs to be performed when the trarfigfetion has changed.

Rendering an image means that the bricks have to be procesadabnt to back
order. For each brick the respective octree is traversadijrgj with its parent node.
Depending on its ratio r there are three ways to process a node

r = 0: The node is completely void. It is not drawn at all, and is mavérsed any
further.

0 < r < threshold: The nodes children will be traversed, and to each child node
this strategy will be applied recursively.

r > threshold. The node is drawn completely. It is not traversed any further

If the threshold is set to 1, exactly all filled cells will be drawn, and no voiglls.
However, that would lead to a lot of tiny cubes at the bouregaof the visible data
structures, and thus the load on the triangle throughptielneick becomes too high.
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Therefore a lowethreshold should be chosen to allow some degree of void data to
be drawn.

Further, an octree levélis specified at which nodes lower in the hierarchy are
not traversed anymore. At this level, any node that is nad vaill be drawn com-
pletely. This strategy is applied to prevent that the ovedhef traversing the octree
completely down to the leaves becomes bigger than the tiatéghvon by skipping
the empty parts. Additionally, this approach enables usptiate the octree on the
fly, when the transfer function changes. The octrees nodeselt contain the min-
imum and maximum voxel value that is represented by the veagiples in their
corresponding cubes. This is constant data, independamttfie transfer function.
When the transfer function changes, only the visibility & tttree nodes higher than
level I needs to be computed again. However, this set of nodes isadinction of
the amount of voxels, and therefore this recalculation eapdsformed very quickly.

When traversing a node, its children have to be sorted in & fooback order.
Since there are eight children, it would seem that therel8are- 40320 ways to
arrange the children. But since the arrangement along tiee ferpendicular axes
is the same for all children, there remalh = 8 possible orders. When a node
is to be drawn, the cuboid box corresponding to this nodeié¢ed| and the slices
are rasterized and blended into the previously drawn sli¢eg slices can be axis-
aligned or viewport-aligned. For the most straight-fordveorm of volume rendering,
the brick texture is interpolated on every slice, takingpitsition in the brick into
account, and after interpolation the transfer functionpgli@d. However, it is also
possible to perform more sophisticated forms of volume eeing on the slices, like
pre-integrated volume rendering or include specularitghf€, 7].

The octree is generated and traversed on the CPU. Its puipasdower the
workload on the graphics pipeline, and thus the GPU. Theseateduces the time
that the GPU spends on processing data which never comribuhe final image.
The actual volume rendering algorithm, as well as intetjiaiathe post-interpolative
transfer function, and optionally, specular lighting, &y performed by the GPU.

3.11 Results

The described approaches have been tested with seveeakdifigraphics cards: the
nVidia QuadroFX 3400 (256MB on board memory), the ATi Fire@L (128MB),
and the 3DLabsWildcat 7110 (256MB). With each card the vaumfigure[3.1Pb
has been rendered, using the same lookup table settingsoltme data concerned
the iliac arteries, acquired through 3D rotational angapdpy. Since contrast media
was injected into the vessels, the vessels could easilydssified using the transfer
function. Only 3% of the voxels in this volume contain vigillata. All results have
been obtained using a view port &0 pixels and the sample rate for the volume
rendering equation was set to 1.5 samples per voxel.

Since the optimal brick size is mainly determined by the prtips of the texture
memory (see sectidn 3.8) and the optimal octree limit is prilpused to balance the
rasterization load and the triangle throughput (see sesfo6 and3.10) they can be
considered to be fairly orthogonal variables. Therefomsrtbptimum can be found
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(b)

Figure 3.12: Test volumes: (aJ12° volume, used for testing early ray termination, (b) vascu-
lar 5122 volume, (c) gigabyte volume 642 x 642 x 1284 voxels, generated by duplicating a
large 3D-RA volume.

by varying one variable, while keeping the other one cortstan

On each graphics card the test volume was rendered withrefiffdorick sizes,
see figuré_3.13, while the octree limit was se8tovoxels. The ATi FireGL X1 and
the 3DLabs Wildcat 7110 clearly show that their optimal bigize is considerably
smaller than their largest possible brick size. The nVidiea@oFX 3400 does not
benefit from the bricking for the 256MB test volume. Howeaso this card clearly
profits from the bricking for the sparse 1GB volume in figurE2g: the optimal brick
size is ther64> voxels, with an average frame rate of 37 fps, while 266> bricks
only a mere 3.1 fps is reached.

QuadroFX 3400 |
QuadroFX 3000 brick
sizes
QuadroFX 1000 oled
] m 323
FireGL X1, xy 0643
aligned 1283
FireGL X1, non xy | 2563
aligned m5123
Radeon 9000
Mobility
Wildcat 7110
0 20 40 60 80 fps

Figure 3.13: Performance using different brick sizes.

The performance of the ATi FireGL X1 depends heavily on thegang direction
of the bricks, because the ATi card treats the 3D texturestsch of 2D slices. When
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the bricks are traversed in the x or y direction, the slicesaacessed rather linear,
and the performance is much better than when they are texv@nghe z direction.

It is inevitable to traverse in the z direction, when the vieyvdirection and the z-
axis of the textures differ more that3°. This effect can be reduced by alternating
the orientation of the textures for each consecutive bi#.[ Especially striking
is the fact that the optimal brick size and octree limit idetiént for each sampling
direction. When sampled in the xy-plane direction largecksibenefit from linear
traversal, while in other directions smaller bricks berfedim less cache trashing. In
figured3.1B anfl3.14 this fact is illustrated by the perforceameasurement when
sampling was aligned to the xy-plane, and when not.

OuadroFX 3400 —— N

QuadroFX 3000 O_C r_ee
limits
3
QuadroFX 1000 ml
m23
FireGL X1, xy W43
aligned T 083
FireGL X1, non xy ole®
aligned m323
3
Radeon 9000 64
Mobility
Wildcat 7110 %ﬁ
0 20 40 60 fps

Figure 3.14: Performance using different octree limits.

Further, the volume was rendered with a fixed brick sizé45fvoxels and vari-
able octree limits (the octree limit is the smallest octrabecallowed). Not every
octree branch reaches this limit, see sedfion]3.10. Flgde @surprisingly shows
that there is an optimum octree size for every graphics c8rdaller octree limits
lead to too much CPU overhead and triangle count, and largjeges to too much
rasterization overhead. Tlid? octree level corresponds to not using any octrees at
all, only bricking.

Table[3:1 shows the acceleration achieved, using the volfigure[3.12b, with
an optimal combination of brick size and octree depth fotheaarticular graphics
card versus the same GPU volume rendering routines appiiedw any bricking or
octrees at all. Since early ray termination does not proaigeperformance gain for
sparse data sets, it was not used on this volume.

Early ray termination was tested on the QuadroFX 3400 ugiegvblume in
figure[3:12a. GPU volume rendering without optimizationslded 2.2 fps, using
642 bricks ands? octree limits 5.2 fps were reached, and with additionallyyeay
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Graphics card a Optimized | b Non-optimized| a/b
nVidia QuadroFX 3000 AGP 25.5 fps 2.2 fps 11.6
nVidia QuadroFX 3400 PCIx 73.5 fps 9.6 fps 7.66
ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362
ATi FireGL X1, non xy aligned| 27.4 fps 0.23 fps 119
ATi Radeon 9000 mobility 9.35 fps 0.26 fps 36.0
3DLabs Wildcat 7110 21.3fps 0.38 fps 56.1

Table 3.1: Average frame rates reached when using (a) best combination ofirigicind
octrees, (b) GPU rendering without bricking or octrees.

termination switched on, the average frame rate was 16.1 fps

Since the rendering primarily depends on the graphics capthcinge.g, a Xeon
3.0GHz by a Xeon 1.7GHz delivered approximately the samBpaance figures.
The only part which is bounded by the CPU and main memory padace is build-
ing a new octree after the transfer function has been chamigea volume consisting
of 5123 voxels (16 bit per voxel, 256MB for the entire volume), reretewith a brick
size of643 voxels and an octree limit &® voxels, building all new octrees for the
entire5122 volume took 6.5 milliseconds on the Xeon 1.7GHz and 3.5 saittonds
on the Xeon 3.0GHz machine.

3.12 Conclusions

In this chapter, an approach to accelerate GPU-based votentering was pre-
sented. The approach consisted of a two staged spacerskippd early ray ter-
mination, and was tailored to lift the various bottlenecks@intered in the graphics
pipeline.

In the first stage, the entire volume is chopped into bricks, faom these bricks
3D textures are created. Empty bricks are never drawn, ratiitkéhe video memory,
and therefore the bus bottleneck is relieved. The optimaklsize depends on the
nature of the data (there should be a reasonable chancae¢hatre bricks which are
completely void), the available texture memory, the textceiche size and the over-
head introduced by brick overlap. Since the brick textum#ent does not depend
on the transfer function, they need to be created only oncgtétic data.

The octrees, which form the second stage, focus on skipmteyttiat is not vis-
ible after applying the transfer function. In this way thetaization bottleneck is
addressed. To prevent too much overhead to be introducesftaarcamount of void
data per octree box is allowed, and there is a limit to the geaity of the octree
boxes. The optimal octree parameters are determined bydhghtof the rasteriza-
tion phasei(e., are there complex fragment shader programs involetx), and the
trade-off between less rasterization operations and miargtes (triangle throughput
bottleneck). Since the octree depends on the transferifumdthas to be recalculated
when the transfer function changes.
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In this chapter it has been shown how the individual bottt&eéhave been ad-
dressed by a two-folded approach. First the bus bottlenedkexture cache size has
been addressed by bricking, and consequently the rastenzzottleneck has been
addressed by the octrees. The rasterization and fragmadéshottleneck were fur-
ther lifted by employing early ray termination. The resuslt®w that the parameters
can be optimized for different graphics cards. Since thesfex function only leads to
recalculating the octrees, and not reloading the bricksritalso be changed quickly
and interactively.

The graphics industry are introducing more powerful haréva an impressive
pace. However developments in medical imaging modalitieequally impressive,
resulting in larger volume data sets. Which means that indheséeable future the
techniques that were presented here will preserve theaflien



Chapter 4

Fusion of Vascular, Soft-tissue
and X-ray data

This chapter is based on the following papers:

e Daniel Ruijters, Drazenko Babic, Bart M. ter Haar Romeny, Badl Suetens. Silhouette Fusion
of Vascular and Anatomical DataPoceedings of IEEE International Symposium on Biomedi-
cal Imaging: From Nano to Macro (ISBI'06April 2006, Washington DC (USA), pp. 121-124.
doi:10.1109/ISBI.2006.1624867

e Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mizhe, Bart M. ter Haar Romeny,
and Paul Suetens. 3D Multi-modality Roadmapping in Neurazgrgphy. Proceedings of SPIE
- Volume 6509, Medical Imaging 2007: Visualization and lexguided Procedured;ebruary
2007, San Diego (USA), pp. 65091F. doi:10.1117/12.708474

e Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mitej, Bart M. ter Haar Romeny, and
Paul Suetens. Real-time integration of 3-D multimodality dafaterventional neuroangiography.
Journal of Electronic Imagingyolume 18, Issue 3, July-September 2009.
doi:10.1117/1.3222939

4.1 Introduction

In this chapter it is described how data coming from multipledalities can be rep-
resented in a single fused image. We apply the fusion to ieets# were segmented
from a 3DRA acquisition and soft-tissue information in a @betataset, which typi-
cally originates from a CT or MR scan. The live 2D X-ray flucropy video stream
is merged into this combined bi-modal representation. figakato account the intra-
procedural usage of this visualization, we aim at creatimgrage that can be ren-
dered in real-time and is easy to interpret, while contagjrafi important clinical
aspects of the rendered data. The described techniquestamestricted to this par-
ticular application or modalities, though, but can also pgli@d in other situations.

Image fusion is the domain of combining two (or more) dataget combined
visualization. In the state of the art, regarding the fusibsolumetric datasets, two
classes of algorithms can be distinguished:

3D Compositing, whereby structures further from the viewer are obscureddsec
ones. This includes surface rendering techniques, sucoasirface rendering

37
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[@] and mesh renderinﬂbg], as well as direct volume reindesf multiple
datasets@@ﬂ and combining surface and volume rergl 1. The
advantage of this class of algorithms is the fact that théapalationship and
topology between the datasets is very clear. Obscuredistesccan be made
visible by using a high level of transparency, though thigd&eto clutter the
resulting image with information. Another way to visualaescured structures
is hiding a part of one of the dataseésg, by using clip planes or clipping
volumes.

Overlaying is the other class, whereby selected internal structufegeince the re-
sulting image, regardless whether they are obscured. Bintglest form this
means that the resulting image is composed of the combimefithe separate
2D projection of both dataseE[?S], usiag, blending, but also the combina-
tion of volume rendering techniques with Maximum Intengttyjection ]
can be considered to be a member of this class. The benefisah#thod is
the fact that no (relevant) information is hidden becausecafusion. On the
downside, however, the representation of the topologyefitita sets is lost.

We intend to use the best of both classes, by combining therhyibrid approach,
without cluttering the result with an overload of data, amaktyielding an image that
is easy to interpret. Our fused visualization is achievegiggenting a subset of the
soft-tissue dataset and the live fluoroscopy data in a sintdge. In order to obtain
such an image, a soft-tissue datagegf{a CT or MR dataset) is registered with a
3DRA reconstruction, see chapfiér 6. Such a representdkiovsa direct correlation
of the position of the live data in the fluoroscopic video atmeand the multiple 3D
datasets. The fast visualization, achieved by using @ffgthelf graphics hardware, is
an integral part of the method.

4.2 Method

4.2.1 Volume and mesh blending

In order to render a fused image, first the triangulated nreghesenting the vessels,
is rendered in the frame buffer. Simultaneously the deptlisedtriangles are written
in the z-buffer. Consequently, a slab out of the voxel datsseaixed into the scene
using direct volume rendering. The position, orientationl ghickness of the slab
can be altered by the user. The slab is rendered by evaludiengdirect volume
rendering equation for each pixel in the view port. To mix tti@ngulated mesh and
the direct volume rendering, we test the z-buffer at eachtiten of the over operator
(equatior-3B). If the z-buffer test shows that, for a pattc pixel, the position of
the present sample of the ray is further away from the vietvan the triangle in the
frame buffer, the frame buffer remains unchanged. The finsipde that lies closer to
the viewer will take the present value of the frame buffemgat, which was written
by rendering the triangulated mesh, see fiduré 4.1. In thistiva color of the mesh
is blended into the volume rendering equation at the apatepplace. An example
of such a blended image can be found in fidure 4.5b.
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@) (b)

Figure 4.1: (a) To fuse meshes and voxel data, first the mesh is rendered to the draan
z-buffer. (b) Then the volume rendering equalion 3.2 is evaluateddwinly textured slices in
a back-to-front order. As long as the slice information lies behind the nmibslgz-buffer test
will prevent the mesh pixels to be overwritten. When the slices are in frantnefsh pixel, the
mesh color will be fed into the volume rendering equation.

The mesh, representing the vessels that were segmenteaiframtra-operative
3DRA dataset, and the soft-tissue MR or CT data will typicalbt be contained
in the same coordinate space. The framework presented endpdA can be ap-
plied directly during the visualization of the mesh and tegtl slices, which makes a
resampling of the slab with the soft-tissue data to the gfithe 3DRA data unnec-
essary, leading to a better image qua@ [70].

4.2.2 Silhouette overlaying

In order to show relevant internal structures that are asdlby the volume rendered
data, we optionally overlay this data with the silhouettehaf mesh. The silhouette
only shows the outline of the mesh structures, and therefdrarely obscures any
previously rendered parts of the image. On the other sidaditates the shape of
the occluded mesh. Furthermore, the interface of the oedlaahd visible part of the
mesh allow to locate the silhouette within the 3D scene. Aamgle of this silhouette
rendering is presented in figure ¥.2.

The silhouette render technique we apply is based on theashetbscribed by
Raskar and Coheh [B0]. In order to render a silhouette, fiestront faces (triangles
with a normal pointing to the viewer) of the mesh are rendéoetthe z-buffer only.
This can be achieved by drawing the triangles with a comiglétansparent color,
or by switching the color mask off. Consequently the wirerfeaof the back faces
(triangles with a normal pointing away from the viewer) oétmesh are rendered,
but this time with a solid color (red in our case), a line thieks larger than 1 pixel
(2 pixels in our case), and z-test enabled.

This process will lead to lines only being drawn where thaffacing and back
facing triangles meet, and thus to a silhouette of the meghinthe whole silhouette
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Figure 4.2: The silhouette rendering allows to visualize the occluded part of a sceshéoan
present the relation with the contextual data, without cluttering the imageinTage: cerebral
vessels, segmented from the 3D-RA dataset. Middle image: the ceretsals;, combined with
a volume rendered slab out of a MR dataset, which obscures the ameuBottom image: the
segmented vessels and MR slab, overlaid with the silhouette of the vessels.
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rendering can be easily implemented to employ the graphiasyare using either the
DirectX or OpenGL API.

4.2.3 Blending with the 2D X-ray image

For the interpretation of the fused image it is beneficial tocpss parts of the X-
ray fluoroscopy data differently, depending on their unded 3D information. In

order to achieve this, it is necessary to establish whicl kin3D data is contained
in each pixel. Here this information is obtained by emplgyihe stencil buffer (for

a description of the stencil buffer, séE[GO]). For everyepir the frame buffer that
is filled by the mesh, a constant valSe is written to the stencil buffer. Also while
rendering the voxel data slab, a stencil buffer operatiatefsed to write a constant
S5 to every pixel that receives a color value from the directiaod rendering process,
with « > 0. The S; labels can be overwritten by, during this operation, see

figure[4.3.

(@)

Figure 4.3: (a) The mesh and the voxel slab write different values to the stencil .bilffdrhe
stencil buffer can then be applied to process the fluoroscopy imagegderilering.

Finally the current fluoroscopy image is blended into thenieebuffer, which is
done in multiple passes. The action that is performed on engpixel in a certain
pass, is determined by the value in the stencil buffgrin the stencil buffer means
that the vessel tree is depicted in that pixel, corresponds to the soft-tissue data.
If the stencil buffer is empty at a certain pixel positioneihthat particular pixel
has not been filled with any information yet (background)nc8ithesS;, S, and
empty regions are addressed individually, different bilegcand image processing
operations can be performed to these regions (compare siguda and4]4b). For
instance, a spatial sharpening to enhance small detadsa #&&amporal smoothing to
reduce noise can be applied to the vessel region.

The fluoroscopy data that overlays the background, can icoswane anatomical
landmarks, which are relevant to the physician. The mosbmtapt part of the fluo-
roscopy image, though, is to be found inside the vessel megioce the movement
of the endovascular devices is supposed to be containethwihiiis region. This hi-
erarchy is reflected in the intensity and filtering of the fhsmopy data stream. The
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(b)

Figure 4.4: (a) In the first fluoroscopy overlay pass, the pixels that are labSleflessel) in
the stencil buffer, are treated. In this case, a sharpening filter was appi¢he fluoroscopy
data, before they were blended with the frame buffer content. (b) In thad@ass, the pixels
that were labeled as background in the stencil buffer, are procesBee fluoroscopy data is
written without being sharpened, and the intensity is reduced.

fluoroscopic information that overlays the soft-tissuébstauld be suppressed, to
reduce cluttering of information in this region.

4.3 Results and discussion

The augmented visualization, consisting of a mesh extidoten a256° voxel 3DRA
dataset, a Volume Rendered slab frord5&2 - 198 voxel CT dataset and the fluo-
roscopy image stream, can be displayed at an average framefra8 frames per
second. All figures were measured on a Xeon 3.6 GHz machime2(&B of mem-
ory, and an nVidia QuadroFX 3400 graphics card with 256 MB efmory, using the
datasets that are depicted in figlire 4.5.

The benefit of the described method is the fact that it allawgidualize multi-
ple partially overlapping datasets in a single fused imagdgle still preserving an
easy interpretation of the data topology, morphology ardréfations between the
different datasets. Especially during clinical intervens it is very important that the
information conveyed by the image can be understood at desgignce. By using
the capabilities of the GPU and the efficient volume rendgt@chniques introduced
in chaptefB, the fused visualization can be rendered atictige frame rates, which
is particularly important when real-time data is part of theed image.

The main restriction of the fusing technique is the limiatbf blending a single
opaque mesh with a single volume rendered dataset. Brectetial. ] describe a
powerful application of depth peeling to combine multipdume rendered datasets,
together with polygon surfacesd., meshes) and clipping volumes. However, how
to combine this approach with the bricking and octrees opt#&3 is currently an
unsolved question. The absence of these acceleratingigeesn together with the
overhead introduced by the depth peeling presently sélll o frame rates that are
unattractive for usage during clinical interventions.
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Figure 4.5: (a) A CT image, clearly showing a tumor, (b) The CT dataset, registertd w
the 3DRA dataset, (c) a single frame from the fluoroscopy image strequtine(@luoroscopy
image mixed with the vessel tree from the 3DRA dataset, (e) the fluorastagy, the SDRA
vasculature and a slab from the CT data, (f) the fluoroscopy image outsd@DRA vessel
tree is darkened.






Chapter 5

Autostereoscopic visualization

This chapter is an extended revision of the following papers

e Daniel Ruijters. Integrating Autostereoscopic Multi-Wié_enticular Displays in Minimally In-
vasive Angiographyln Proc. MICCAI 2008 workshop on Augmented Environmentd/fedical
Imaging and Computer-Aided Surgery (AMI-ARCSyptember 10, 2008, New York (USA), pp.
87-94

e Daniel Ruijters. Dynamic Resolution in GPU-AcceleratedWbé Rendering to Autostereoscopic
Multiview Lenticular Displays. EURASIP Journal on Advances in Signal Processiigume
2009, Article ID 843753, 8 pages, 2009. doi:10.1155/20637%3

5.1 Introduction

Stereoscopic images present a view on a 3D scene that addsatise of depth by
showing slightly different images to the left and right effean observer. The addi-
tional depth impression enables a natural interpretatiadhe3D data. Principally
there are two approaches for conveying a stereoscopic iniage multiplexing and
spatial multiplexing of two or more view#utostereoscopic displays allow a stereo-
scopic view of a 3D scene without the use of any additionagred aids, such as
goggles. Though two views are enough to create the impressidepth (after all,
we have only two eyes), offering more views has the advaritagehe viewer is not
restricted to a fixed sweet spot, since there is a range ofimusiwhere the viewer
will be presented with a stereoscopic visualization. Asrsseguence, multiple view-
ers can look at the same stereoscopic screen, without wegoggles. Furthermore
it is possible to ‘look around’ an object, when moving withie stereoscopic range,
which aids the depth perception.

Multiview autostereoscopic displays can be regarded @&ettiimensional light
field displays|{__8|]E2] (or four-dimensional, when also ddagng time). The dimen-
sions are described by the parametersy, ¢), wherebyz andy indicate a position
on the screen and indicates the angle in the horizontal plane in which thetligh
emitted. The light is further characterized by its intepsibd its color.

Present technological solutions to autostereoscopitayisyy typically use either
lenticular lenses or parallax barriers to achieve the sta@pic effect. The parallax

45
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barriers displays use a grid that is placed at a small disténoen the screen pixels,
and blocks a different set of pixels when viewed from a déferdirection. The mul-
tiview lenticular display uses a sheet of lenses to spwgtialiltiplex the viewsS],
and typically offers four to fifteen spatially sequentiakiges. The advantage of the
lenticular technique over the parallax barriers approadhé fact that all light pro-
duced by the screen is also emitted.

In this chapter we examine the autostereoscopic displalgarcontext of med-
ical applications. Especially during clinical intervearis, interactive manipulation
and high resolution visualization of medical data are twpantant and sometimes
conflicting requirements. We discuss the properties of¢h&dular autostereoscopic
display with respect to perceived resolution, and we exptodynamic balancing of
interactive frame rates and highest possible resolutiaiiréct volume rendered data.

5.2 State of the art

In 1838 Sir Charles Wheatstone developed a device, callesteheoscope, which al-
lowed the left and the right eye to be presented with a diffeimage (illustration or
photograph), in order to create an impression of depth. dia@and Pfister{E4] pre-
sented a comprehensive overview of the various systemddm@ascopic visualiza-
tions, that have been developed over the time. The develoipohautostereoscopic
display devices, presenting stereoscopic images with@utise of glasses, goggles
or other viewing aids has seen an increasing interest s}imacieQQOS[g[E@ﬂ.

The advancement of large high resolution LCD grids, witHisignt brightness
and contrast, has brought high quality multiview autosiscepic lenticular displays
within reach [EB]. A number of publications have investeghthe image quality as-
pects of autostereoscopic displays. Setmget al. ﬂ@] have discussed the perception
quality of lenticular displays as a function of white noidgéonrad and Agniel [90]
describe the Fourier domain properties of the lenticulapldiy, and they propose a
pre-filtered sample approach. The effect of light that ougtiie contributed to one
particular view leaking into other views, which is calledsstalk, has been quantita-
tively investigated by Braspennirg al. [91] and Boeet al. [92].

The range of viewing positions, allowing the perception daftereoscopic im-
age, is mainly determined by the number of views offered leydisplay. Further, a
higher resolution per view leads to less artifacts and imggdhe image quality. The
required resolution of the LCD pixel grid can be establisaedhe number of views
times the resolution per view. Clearly, fulfilling both regments demands very high
resolution LCD pixel grids, which means that an enormoustarhof pixel data has
to be rendered and transferred to the display.

Several publications describe how the GPU can be employesgttact the data
stream for the lenticular display from a 3D scene in an effeananner. Kooimaet
al. @] present a two-pass GPU based algorithm for two-vieadhigacked parallax
barrier display. First the views for the left and the righteeyre rendered, and in
the subsequent pass they are interweaved. Domoekas$ [94] describe a two-
pass approach, dedicated for iso-surface rendering. Ifirdtepass they perform
the geometry calculations on the pixel-shader for everyiddal pixel, and in the
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second pass the shading is performedibker and PajarolﬂbS] describe a GPU-
based single-pass multiview volume rendering, varyingdinection of the cast rays
depending on their location on the lenticular screen.

The previous GPU-based approaches were dedicated rendleodegworking
on the native resolution of the lenticular LCD grid. We pr@san approach that
decouples the render resolution from the native LCD gridltg®n, allowing lower
resolutions, when higher frame rates are demanded.

5.3 The multiview lenticular display

The multiview lenticular display device consists of a stedet/lindrical lenses (lentic-
ulars) placed on top of an LCD in such a way that the LCD image®is located at
the focal plane of the Iensds__[%]. The effect of this arramgat is that LCD pixels
located at different positions underneath the lenticulitirthe lenses when viewed
from different directions, see figufe.1. Provided thasthpixels are loaded with
suitable stereo information, a 3D stereo effect is obtaiired/hich the left and right
eye see different, but matching information. The screenseel wffered nine distinct
angular views, but our method is applicable to any numberieyfs.

Figure 5.1: The light of the sub-pixels is directed into different directions by the shieet o
lenticular lenses.

The fact that the different LCD pixels are assigned to déffenviews (spatial mul-
tiplex), leads to a lower resolution per view than the resotuof the LCD grid |[§_17].
In order to distribute this reduction of resolution over biwgizontal and vertical axis,
the lenticular cylindrical lenses are not placed verticatd parallel to the LCD col-
umn, but slanted at a small angE[SS]. The resulting asségrrof a set of LCD
pixels, which is specified by the manufacturer, is illustchin figurd 5.2. Note that
the red, green and blue color channels of a single pixel grietel in different views.
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Figure 5.2: The cylindrical lenses depict every sub-pixel in a different view. Timelbers in
the sub-pixels indicate in which view they are visible.

5.4 The different angular views

We propose a two pass algorithm: First the individual vierosrf the different foci
positions are separately rendered to an orthogonal gritheisecond pass, the final
output signal has to be resampled from the views to a noregathal grid in the
compositing phase (see figurel5.3). The processing powéreoGPU is harvested
for both passes. In order to maintain an acceptable franse tta resolution of the
views can be changed dynamically.

Projection matrix
view 1

# \/olume Rendering

\

Projection matrix . " .
vievjv 2 # \/olume Rendering - Compositing — Display

Projection matrix
view n

| \/olume Rendering

Figure 5.3: The process of rendering for the lenticular display. Optionally, the reindeof
then individual views can be done in parallel.

The frustums that result from the different focal spotsilustrated in figuré 51.
The viewing directions of the frustums are not parallel te ttormal of the screen,
except for the center one. Therefore the correspondingimsare asymmetriﬁb8].
Aworld coordinatez, y, ) that is perspectively projected, using such an asymmetric
frustum, leads to the following view port coordinatér, y):

v(z,y) = (W +n-d, ;/_];) (5.1)
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Figure 5.4: The frustums resulting from three different view points.

/

Figure 5.5: The same scene rendered from the most left and most right view point.

Whereby f denotes the focal distance,the view number and the distance be-
tween the view cameras. All parameters should be expresskd same metric(g,
millimeters), and the origin is placed in the center of thewport.

Figured 5.4 anf 85 illustrate the process of rendering ¢baesfrom focal spot
positions with an offset to the center of the screen. Afterphojection matrix has
been established based on equdfioh 5.1, the scene has tmlbeaakfor that particular
view, using the techniques from chapiér 3. All views areextdn a single texture,
which we calltexturel In OpenGL, the views can be placed next to each other
horizontal direction, using thgl Vi ewport command. The location of a pixel in
view n in texturelcan be found as follows:

- 1 n  2p,—1
t: *+T+ = 5 52
G+E+Z »n) 5.2)

n

wherebyi denotes the normalized texture coordingtehe normalized pixel coor-
dinate within the view, andV the total number of views. The view indexis here

assumed to be in the ranée%7 %} , as is used ire.g, figure[5.2.
5.5 Resolution considerations

The maximum information density that can be conveyed byehgdular display per
view, is determined by the way the pixels of the LCD grid afeaeed by the lenticu-
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Figure 5.6: A lattice (black dots) and corresponding Voronoi cells (red). The mnesctors
compose a possible badisfor this lattice. The Voronoi cell of a given lattice point is the set
of points inR” that are closer to this particular lattice point than to any other lattice point.

lar lenses. In modern lenticular displays, the lens arrajaisted under a slight angle,
which affects the distribution of the set of pixels that akeded to a particular view-
ing angle. In figur€5]7a it is shown how the green sub-pixedihle from the middle
viewing position (view 0), are distributed over the LCD grithough the allocation
of the sub-pixels over the grid is regular, it is not orthogloriThe sampling theory
of multidimensional signals, described by Dubdis [99], tenused to examine the
frequency range that can be transmitted by a certain ndrgonal grid. Especially
the maximum view port size that does not lead to aliasing istefrest. When the
resolution of the view port is too high, the compositing ursdenples the view, and
aliasing occurs. Though such views can be low-pass filtergudavent aliasing, it is
preferable to render them immediately at the optimal reégwiyin order to keep the
load on the scarce processing resources as low as possible.

The set of sub-pixels that are refracted to the same angigarcan be consid-
ered to form a lattice. Let the vectofsi, v, ..., vy} form a basis, not necessarily
orthogonal, oRY. Thenlattice A ¢ R” is defined as a set of discrete point&ifY,
formed by all linear combinations of vectaf, vs, ..., vy with integer coefficients.

In order to perform a Fourier transform of a signal, sampleddattice, the re-
ciprocal lattice is required. Thieeciprocal lattice A* of lattice A is defined as the
set of vectorsy, such thaty - # is an integer for alli € A. Let V' be the matrix,
whose columns are the representation of the basis veg€toss, ..., vy in the stan-
dard orthonormal basis f@&". Then matrixi¥, containing the basis vectors of the
reciprocal latticeA*, is determined by "V = I, with I being theN - N identity
matrix.

The Voronoi cellof a lattice is defined as the set of all pointsRA’ closer to
origin 0, than to any other lattice point, see figlirel 5.6. The besisr a given lattice
is not uniqueice., a latticeA can be described by several different basis matri€es
However, any basis for a certain lattidedelivers the same unique Voronoi cell.

Let the Fourier transform of a continuous multi-dimensiogignal u.(Z) with
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Figure 5.7: (a) The LCD pixel grid and the view that is associated with each sub-pixed. T
green sub-pixels that are diverted to view 0 are circled. (b) All sublpitteat are diverted
to view O are circled, independent from their color. (c) The reciprocétida of the green
sub-pixels for view 0. The Voronoi cell of the reciprocal lattice is indicatedink. In blue
the Nyquist frequency of the 1/3 orthogonal grid is indicated. Since thendocell does not
cover the complete Nyquist frequency range, slight aliasing in the highgquéncies might
occur. (d) The reciprocal lattice of the sub-pixel configuration of vigwgnoring their color.
Since the Nyquist frequency range (blue) is contained within the Voratiajpink), there is
no aliasing in the intensity image.

Z € RN be defined as:

—

U.(f) = /R u(@e Ty, ferY (5.3)

The Fourier transformation of signal sampled on latticd is periodical, with lattice
A* as periodicity[[99]:

u(f) = |dm > Uf+7) (5.4)

FEA*

Consequently, if a signal that is not bandwidth limited wvitthe Voronoi cell of
lattice A*, is sampled on latticd, spectral overlapi.e., aliasing) occurs.

The sampling that occurs in the compositing phase can beiegdmconsider-
ing only one monochromatic primary color (red, green or ploe can be evaluated
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for all colors together, see figuie b.7. The basis matricesf the sample lattice
can be established by taking two (non-linearly dependesttjors between adjacent
lattice points. The LCD pixel distance is used as a metridckvimeans that two
neighboring sub-pixelse(g, red and green) have a distance%opixel. E.g, for
the color-independent lattice (figure 5.7b), we take theorsai; = (3, —1)” and
v3 = (3,1)7. This delivers the following basis matricesand their reciprocals/”:

3 -1 5 4
Vmono (0 _3) cholo’r (_1 1)
3 0

3 3
_1 1
Wmono ) <1 3> Wcolor 9 (4 5)

The individual views are rendered on an orthogonal grid, twedVoronoi cell
of an orthogonal lattice is a simple rectangle. The maximasolution that can be
visualized on the lenticular screen can be examined bydittirs Nyquist frequency
rectangle range of the orthogonal grid on the Voronoi cethefreciprocal lattice of
the lenticular sample grid.

A logical choice for the resolution of the individual viewsy a lenticular screen
with 9 views, seems to b§of the LCD pixel grid resolution in both directions. After
all, this represents the same amount of information: 9 vieits each% . % the
amount of pixels of the LCD grid. We call this the 1/3 orthogbgrid. The Nyquist
frequency rectangle of this resolution has been depictedmnof the Voronoi cell of
the reciprocal lattice of the lenticular sample grid in figii.7. Looking at a single
primary color channel (in figurle3.7a the green sub-pixeésumed, but the lattice
is the same for red and blue), it can be noted that the reedsgiot completely
encapsulated within the Voronoi cell. This means that fonauthromatic red, green
and blue images there is a slight undersampling in certaigctions, and aliasing
might occur in the higher frequencies. If the lenticulatita for a single view is
considered, regardless of the colors of the sub-pixels, ttheerectangle is completely
contained within the Voronoi cell, see figufes]5.7b and dsTimiplies that for grey
colored images there is no aliasing when only the interssitie considered, but there
might be some aliasing between the colors. In practise #fistiour resembles color
dithering for real-world images. High frequent primarjlared structures (such as
thin lines) may suffer from slight visible aliasing artifacthough.

(5.5)

5.6 Dynamic resolution

As long as there are sufficient processing resources aisilab use the 1/3 orthogo-
nal grid as resolution of our views. This resolution prow@egood trade-off between
maximum detail and minimum aliasing, as described above. nthe frame rate
falls below a pre-defined threshold, the resolution of thidvidual views can be low-
ered, see figurie 5.8. For sake of simplicity we use the sanofutem for all views
that contribute to a particular frame, but there is no technmieason imposing this.
The resolution of a view can simply be changed by setting it port to the desired
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(b)

Figure 5.8: (a) The lenticular screen has been photographed, to show how a viegirig b
displayed, rendered at the 1/3 orthogonal grid resolution. (b) Theesaiew, but sampled at
0.375- the resolution of the view in figure a). Though the downsampling is visiblesffeet
is less strong than might be expected. This can be contributed to the fathéhdisplaying
process possesses a low-pass filter character, due to effects lilstadtkos

(b)

Figure 5.9: (a) The raw output signal that is send to the lenticular display. Please natétth
Moiré-like structures are not artifacts, but can be contributed to the interweeaub-pixels,
belonging to different views. (b) A zoomed fragment of the left image.

size. The size of the off-screen buffer containiagturelis not changed; it is always
kept at the maximum size needed.

Of course, lowering the view resolution does not guararitaethe desired min-
imum frame rate is achieved. This is mostly determined byntlagor bottlenecks
in the 3D scenel [55], see chapi@r 3. In cases where the maiersek is deter-
mined by the fragment throughput, the frame rate scaleswelywith the view port
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Figure 5.10: Dashed line: frame rate in frames per second (fps). Solid line: view resalutio
scaling. The horizontal axis represents the consecutive frame numbers

size, and may increase significantly. Wheug, the vertex throughput is the most
important bottleneck, the frame rate is largely indepehdéthe view port size.

Lower resolution views, correspond to smaller Nyquist aagtes in the fre-
quency domain. For lower resolutions, the rectangle tyiyicigs in the Voronoi cell
of figure[B.Tc, which implies that the view is oversampledh®sy¢dompositing process.
This corresponds to low-pass filtering the view at maximusohgtion, which means
that reducing dynamically the view resolution does not leadliasing artifacts, but
merely to loss of detail. These details can be regained wiesdene content is more
static, and there is sufficient time to render the scene &ttagolution.

To composite the final image, which will be displayed on thditailar screen,
the red, green and blue component of each pixel has to be sdrfipin a different
view (see figur€s]2). The view number stays fixed all the tioreehich sub-pixel.
Therefore this information is pre-calculated once, and fh in a static texture map,
calledtexture0

In the compositing phase, all the pixels in the output imageparsed by a GPU
program. For each normalized pixel coordinatia the output imagetextureOwill
deliver the view numbers that have to be sampled for the red, green and blue com-
ponents. The respective views are then sampldéxturelaccording equation 5.2,
using bi-linear interpolation, delivering the appropeigixel value, see figufe 5.9.

5.7 Results

Figure[5.I0 shows the adaptive adjustment of the view résolu The minimum
desired frame rate was set to 7 frames per second in this whse) corresponds
to rendering 63 views per second, since the lenticular ayspquires nine views to
compose one frame. The measurements were performed udingesocendering of
the data set depicted in figure 5.8, and involved advancédinig. It consisted of
2562 - 200 voxels (25 MB), while the output signal comprisegD0 - 1200 pixels. The
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- Frames Views
Volume description
per second per second

3DRX foot, 2562 - 200 voxels (25 MB) 52.4 471

CT head5122 - 256 voxels (128 MB) 19.2 173
3DRA vascular (sparse)] 23 voxels (256 MB) 21.3 192

4D cardiac CT, 3 phases 8122 - 333 voxels (totally 13.6 123
510 MB)

Table 5.1: The performance of GPU-accelerated volume rendering when gemglianages
for the lenticular screen.

resolution of the views was the resolution of the 1/3 orthwdarid, multiplied by
the scaling factor (right vertical axis) in both theandy-direction.

In order to characterize the performance of the GPU-aateldrvolume render-
ing and compositing, several data sets were rendered af3h@thogonal grid res-
olution to an output window 08002 pixels. Nine views were rendered per frame,
and the view size wa®64? pixels. Tabld 5l shows the frame rates that were mea-
sured, using different datasets. All measurements wea e, using a 2.33 GHz
Pentium 4 system, with 2 GB RAM memory, and an nVidia Quadr@=R0 with
256 MB on board memory as graphics card. It becomes cleairtloatier to achieve
acceptable and interactive overall frame rates, a sulistanimber of views have to
be rendered per second. Here we benefit considerably fro@Pkacceleration and
sophisticated optimization techniques that were desdiiibehaptefB.

5.8 Clinical setup

We applied the presented approach to visualize intra-tipelpacquired 3D data sets
on a Philips 42" lenticular screen, which was mounted in theration room (OR),
see figur€5.11. The screen possesses an LCD panel coneistiizf) x 1080 pixels
(HD resolution), which are refracted into nine distinctwgeby the lenticular lenses.
The orientation of the depicted 3D data set can follow intiea& the orientation of
an X-ray C-arc system, which means that on the lenticulgslaysthe 3D data set
is visualized from the same viewing angle as the viewingdeoce on the patient
in the real-time X-ray image, see sect{onl6.6. This appraalciws to reduce the
X-ray radiation, since the physician can choose the optiongntation to acquire
X-ray images without actually radiating. Further it impesvthe interpretation of
the live projective 2D X-ray image, which is presented on pasate display, since
the 3D data on the stereoscopic screen (which is in the sametation) gives a
proper depth impression through the stereovision of theciglar screen. The fact
that the clinician is not limited to a single sweet spot (arviewing location where
the stereoscopic effect can be perceived), makes the welti-display particularly
suitable for this environment, since the clinical intertten demands that an operator
can be positioned freely in the range close to the patient.
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Figure 5.11: Top: the 42" lenticular screen (top right display) in the operating roomttBm:
the X-ray C-arc system in a clinical intervention.

The ability to visualize and manipulate the 3D data intevaby is of great im-
portance in the analysis and interpretation of the dataerdwativity, in this context,
means that the frame rates of the visualization are suffitbgarovide direct feedback
during user manipulation (such as rotating the scene). Weewisualization’s frame
rate is too low manipulation becomes very cumbersome. Famds per second are
often used as a required minimum frame rate.

Especially the cerebral vasculature consists of many duressels, see figure 5112.
From a single X-ray image it is impossible to interpret thevature perpendicular to
the viewing plane (the curvature in thedirection of the image). But even looking
at a 3D rendered image on a 2D plamne.( conventional monitor), it is often very
difficult to estimate the in-plane curvature without ratatithe vessel tree. Rotating
a 3D scene is not a problem when sitting behind a desktop campwt during a
clinical intervention the performing clinician is primbrioccupied with the medical
procedure, and interaction with sterile computer inpuickEy (which are available in
the OR) is an additional task, demanding focus. The steopis@mage allows to in-
terpret the 3D shape, including the in-plane curvature,dimgle glance without any
additional input interaction, and therefore reduces thataiestress on the clinician
during the intervention.
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Figure 5.12: Volume rendered vascular 3DRA images. From left to right: brain artemnous
malformations, virtual stenting and aneurysm (blue), another neurselé®e with aneurysm,
and vasculature mixed with soft-tissue data.

5.9 Conclusions

In this chapter a method for accelerated rendering to metilenticular displays has
been presented. Due to the GPU-acceleration, togethetthvdtadaptive adjustment
of the intermediate view resolution, interactive framesgatan be reached, which
allows intuitive manipulation of the rendered scene. Shnath the volume rendering
and the compositing take place on the graphics hardwaregethérements for the
other components of the PC system are rather modest. Thusdligation of the
proposed high performance system can be very cost effeapast from the costs of
the lenticular screen.

Feedback from clinicians indicates that there certainlg [gerspective for clin-
ical added value. Orthopedic surgery is suggested as anapipdication area that
could benefit from the multi-view stereoscopic display. Better integrated usage,
the display should be mounted on the same ceiling suspemsibrthe other (2D)
displays. Also the integration of the live fluoroscopy imagehe 3D scene would
be highly appreciated. Both the fact that the clinicians doneed to wear any addi-
tional glasses, and are not limited to a sweet spot, as wéleatact that large data
sets can be manipulated interactively, make this methog sgitable for a clinical
interventional environment. In order to give an impresibthe added value of the
depth perception provided by the stereoscopic 3D effeatrdig5.18 and 5.14 show
anaglyph images of a carotid artery.
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Figure 5.13: Anaglyph image of a 3DRA reconstruction showing a aneurysms in dig¢daro
artery. The stereovision effect is obtained by using anaglyph glassegeftleye glass should
be red and the right eye blue.
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Figure 5.14: Anaglyph presentation of the same dataset as in figurd 5.13, but shomwra
different angle.
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Registration is the process of spatially aligning two imdgtasets, such that the
corresponding anatomical morphology in both datasetdap®r The application of
image registration during a clinical intervention imposesstraints on the algorithms
and their possibilities to interact with the user.

The major restriction on the algorithm is the available catafion time. In spite
of Moore’s law, the computation time for registration aligfoms tends to be rather
considerable and ranges from minutes to hours. For usagegdtlimical interven-
tional treatment, this amount of time is not available.

Many registration methods benefit from interaction with tleer. They either
need user input to perform the registration task, or berrefit fuser driven initializa-
tion, which can shorten their computation time. The po#i§és for user interaction
during treatment, however, are limited. The clinician gitally standing in the inter-
vention room at the patient’s table side, and input device®#en less accurate and
not always easy to use.@, due to sterility requirements) than compared to desktop
usage. Also, the display is frequently one or more meters/awaat an awkward
angle. Furthermore, the clinician is focussed on the dingrocedure and there is
only limited time and attention for computer interaction.

The registration methods which were developed and app@Edthese constraints
into consideration. In the following chapters first the velat state of the art is in-
troduced (chaptér 6), a fast approach to registration dhgos by using the graphics
hardware is described in chapfér 7, and finally chdgter 8dinizes a method espe-
cially designed for vascular 2D-3D registration.






Chapter 6

Registration algorithms

6.1 Introduction

The objective of a registration algorithm is to establishpat&l mapping between
two image datasets. Typically, one of the datasets is asdimbe the reference data
and is not modified, while the other dataset is handed theofdleating data, and is
spatially manipulated to match the structures in the refezalata. Most registration
algorithms consist of three components;

e A spatial transformation, delivering a mapping betweendberdinate space
of the floating image and the coordinate space of the referienage.

e Asimilarity measure, indicating the quality of a given spktransformation by
expressing the resemblance of the reference data and thellggeansformed
floating data in quantifiable terms.

e An optimization algorithm, which iteratively searches tdpimum of the sim-
ilarity measure. The search space consists of the multedgional control
variables of the spatial transformation.

It should be noted that this decomposition does not applyl teegistration ap-
proaches known in the literature. Demons or optical flow aigms, for exam-
ple, integrate the deformation and optimization compamémta single combined
schemel[100, 101].

The image data may originate from different imaging modsdjtand is not re-
stricted to only two dimensional images, but may also redehigher dimensional
data €.g, 3D or 4D). It is also possible to register images of différdimensionali-
ties, which results in a spatial mapping that is a one-toyrmaapping. In this work
we focus on 3D-3D registration of multi-modal data and 2Df8Bistration between
2D X-ray projection images and 3D voxel data, whereby we spgeeially attention
to the calculation time of the algorithms.
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6.2 Spatial transformation

6.2.1 Affine transformations

Spatial transformations can be divided into two classéisieeind non-affine transfor-
mations. Affine transformations consist of a linear transation and a translation,
and can be expressed by:

i AT +b (6.1)
In homogeneous coordinates the affine transformation cazaptired in a single
matrix (for 3D space, d x 4 matrix):
i A b| [T
= 6.2
-1 10 o

An important property of affine transformations is the fdwttthere are relatively
few parameters to describe the transformation, which allaffine registrations to
be calculated relatively fast, compared to non-affine tegfisns, due to the limited
dimensionality of the parameter space. Since all spagahehtsice., pixels or vox-
els) undergo the same transformation, the computation aiffame registration is
relatively robust. After all, a false transformation leddsa discorrespondence for
(almost) all spatial elements.

Rigid transformation is the most commonly used sub-classfofe transforma-
tions. Rigid transformations only consist of a rotation &magslation, and thus do not
possess any scaling or skewing. Rigid transformationsesgmt the non-deforming
displacement of subjects.

6.2.2 Non-affine transformations

Non-affine (or elastic) transformations are applied to dbedocal deformations. It
is possible to divide non-affine transformations into thsebclasses:

e Mesh based transformations. A mesh of non-uniformly disted control
points is established. Typically the control points arecpthon some fea-
tures that are extracted from the floating imagey, gradients, ridges, seg-
ment boundariegtc The mesh is then projected on the reference image, and
the control points are manipulated according to some aritefe.g, optimiz-
ing the similarity measure, or finding corresponding paten the neighbor-
hood of the control point). The deformation of the image edata between the
control points is then driven by the displacement of the m@mioints. Most
commonly the mesh is triangulated, and the elements wittriargle (or tetra-
hedron in 3D) are linearly interpolated.

e Uniform grid based transformations. A uniform grid of cantpoints drive a
linear combination of a class of basis functioE[lOZ]. Camnshoices for
the basis functions are orthonormal wavelet or Fourier ©§@3], thin plate
spline models using radial basis functio@loq, eIasrbidybsplinesS], or
B-splines [LTleE?]. The latter have the advantage of Iseoabort, which
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allows a reduction of computation time. The advantage ofitiigorm grid ap-
proach is the fact that there is no dependency of the robtrstatdon of feature
points. The disadvantage is the fact that in order to desdnile deformation
structures, a huge number of control points is needed. Taerehowever,
techniques that allow to 'switch off’ control points dynaally during the reg-
istration €.g, when the derivative of the similarity measure is very low fo
a certain control point), and thus reduce the dimensignafithe parameter
space, see.g, .

e Direct mapping. These methods map each element in the fipatiage di-
rectly on the reference imade__LiMOl]. In every iteratiattisplacement is
established for each image element of the floating image ttzer typically
a regularizer is applied to the displacement field. Omittimg regularization
would yield an ill-posed problem [102].

6.3 Similarity measure

The similarity measure indicates how well the content ofréference image and the
spatially transformed floating image overlap. Similaritgasures can be grossly sub-
divided into two classes: intensity driven approaches aatlfe driven approaches.
As a rule of thumb feature driven approaches are faster thtansity based meth-
ods, since the amount of information needed to describeetteifes is usually sig-
nificantly smaller than the amount of original image infotina. Feature driven
approaches are usually targeted at registering a spec#tomital structure. Their
typical weak points are the dependency on robust extractidhe desired features
from the image, and their reduced suitability for non-affiegistration due to lack
of per-point information, especially outside the featureaa. In intensity based ap-
proaches, information of the entire image space contriltiatéhe similarity measure,
which aids in developing reliable non-affine registratioethods.

The choice of the similarity measure depends very much orstigect to be
registeredi(e., which anatomy, region of interest{c), and on the types of images
(i.e, modality, dimensionalityetc) to be used. Popular intensity driven similarity
measures are sum of squared differences (SSD) and mutaahiation (M) [109].

An important aspect for intensity driven similarity meassiis image interpola-
tion. Images (in any dimensionality) are composed of a selisifrete spatial ele-
ments. However, the spatial transformation is typicallfirds as a continuous map-
ping RN — RM with N and A denoting the dimensionality of the floating and
reference image space, respectively. This means that fiotiterg image intensities
‘in-between’ the discrete spatial element positions hausetdetermined. According
to the Shannon-theorem, any bandwidth limited signal carebenstructed from a
set of discrete samples usiagnc interpolation, provided the sample rate fulfills the
Nyquist criterion. Unfortunately, this interpolation ismaputationally very expen-
sive. Unseet al. has demonstrated that higher order B-spline interpaidtioms a
good aIternativeO]. In sectidn 7.2 it is discussed hois tan be mapped effi-
ciently on the processing capabilities of the GPU.
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In SSD for all spatial elements in the reference image, tfferdnce between
intensities of the reference element and the corresporelgmgent in the spatially
transformed floating image are calculated. The sum of thareguof these differ-
ences, divided by the number of processed elements, yledS$D similarity mea-
sure. Since SSD is very sensitive to large intensity diffees, it is primarily suited
for single-modality registration. The least-squares fa$SD makes it computa-
tionally very attractive for optimizers that use the deties of the similarity measure
and assume a quadratic form, such as Quasi-Newton and LexgeMarquardt opti-
mizers.

Ml is a concept known from information theory, and expregbesstatistical re-
lation between two given sets of ordered data, and can beufated in terms of
entropy. The entropy of a random variable consisting of a number of events
with probability distributionp(z), is H(X) = — )", p(x)log(p(z)). The entropy
is maximal when the probability is uniformly distributeick., each event has equal
probability. Its minimal value of zero is reached whef:) = 1 for one event and
zero for the others.

MI can be expressed, using the joint entrddyA, B; 7) and marginal entropies
H(A) andH(B; 1), wherebyA denotes the reference image the floating image,
andr the spatial transformation:

I(A,B;7) = H(A) + H(B;7) — H(A, B; 7)

p(a, b;7) (6.3)
‘Zzp“b””( <><b7>>

acAbeB

The joint probabilityp(a, b; 7) can be easily obtained by determining the joint his-
togram of the reference image and the transformed floatiragyém The joint his-
togram is a two dimensional histogram, whereby the one @&fsesents the inten-
sities of the reference image and the other axis the inteasif the floating image.
The joint histogram bins represent the occurrence of ttegtiqular intensity pair for
the entire set of spatial positions in the image space. Ieraxbe robust for noise
and to speedup calculations, the histogram bins usuallgsept a range of intensi-
ties. Commonly the whole intensity range of an image is diglichto 8 to 64 evenly
spaced bins.

In its simplest form, it is not possible to determine the dive of the Ml sim-
ilarity measure with respect to the spatial transformapanameters. In order to
overcome this limitation several approaches have beeropeal) The Parzen win-
dow distributes intensities over several adjacent bindJ[1while the (generalized)
partial volume approach pairs the spatial elements in tlegerce image to range of
elements in the floating image according to a chosen kL]. Dirk Loeckx
has demonstrated that all mentioned variations of Ml candpuced in a single
comprehensive framework, which can be expressed in a siogtaula @]. This
framework also makes it insightful how the derivative carob&ined, and why it is
not available for the simplest form of MI.

The iterative closest point (ICP) algorithm or a variatibereof is being used in
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many feature-based methods. ICP relies on minimizing theafuminimal distances
between the feature points in the reference and projectagemit can be efficiently
calculated by determining the distance transformatiomefi¢atures in the reference
image as a preprocessing step. The ICP is then obtainedibethtons by projecting
the transformed features of the floating image on this digtaransformation, and
summing the sampled distances [114].

6.4 Optimization

Finding the parameter set that delivers the optimal transfition according to the
chosen similarity criterion can be a challenging task. Tineethsionality of the pa-
rameter space can be enormous when there are many contntd,paid even rigid
registration already possesses a six dimensional paraspaiee. In this huge space
there are often many local optima. Establishing the glob&ihoum within the time
frame that is available during interventional treatmeniads a possibility given cur-
rent computation resources (even when using a workstalimter). Therefore local
optimization strategies are used. The global optimum (@aseonable approxima-
tion) can be found by a local optimization strategy, prodidee initialization of the
parameter configuration is within a sufficient monomodatjeaof the similarity func-
tion.

The local optimization strategy can advance much fastenveimalytical deriva-
tives of the similarity measure are available. Gradientdet Quasi-Newton and
Levenberg-Marquardt are examples of such optimi [1ABExample of an opti-
mization strategy that does not require derivative infdiamais Powell’s metho 6].
This method searches the parameter space by performing selarch in every direc-
tion of an orthonormal basis in each iteration. The basisbeaadapted between the
iterations. It may be obvious that this approach takes denably more time, but is
also somewhat less likely to get trapped in small local oatim

Another group of strategies that do not demand derivatiferimation are the
probabilistically based algorithms, such as simulatecealing [117] or controlled
random search [118]. These methods sample the parametar ispaach iteration
around an intermediate set of best samples according tehasttically driven strat-
egy. These types of algorithms are even more robust to Iqataha than Powell’'s
method, but their results are not necessarily reproduciblathermore, they typi-
cally need a lot of samples before the optimum is found withasonable accuracy.
Stochastic algorithms can be implemented to perform a keaich, starting from an
initial configuration, or a global search with a random aditiation.

Independent from the chosen optimization strategy, a gppdoach has proven
to be the following: start the registration with a numbertefations in low resolution
with few control points to find large deformations, and gratiurefine the registra-
tion by moving to higher resolutions and more control poiniie low resolution
images represent a coarse scale, and are very suitable t@afgamagnitude low
frequency deformations. Also the iterations in low resoluican be computed rela-
tively fast. Unselet al. have shown how the image pyramids that contain the image
in different resolutions can be efficiently obtained [119].
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6.5 Validation

The objective of validation is the assessment that the tregjisn algorithm fulfills
its clinical purposelEO]. The validation of the algorittshould always be con-
ducted in the context of its application. Many boundary d¢toxs are determined
by the application; Which imaging modalities are being us&dRat is the typical
spatial resolution, dimensionality, signal to noise rafield of view, etc, of the im-
ages? Which anatomy is being imaged? Is manual interactittinami expert user
an option? Which computation times are acceptable? Which appoeamount of
non-ridged deformations are to be expecté&de, etc, etc When the context of the
application has been established, a set of representattaseats has to be gathered.
Usually, for initial development a rather limited databaskeeing used, but for proper
validation a representative database with sufficient bdifg is needed. There are
several aspects that are evaluated during the validati@arefistration algorithm.
The properties that most commonly are investigated arectfeness, robustness
and duration (computation time) [121].

The ground truth is the transformation that perfectly déssrthe spatial relation
between two image datasets. The effectiveness of an dlgodescribes how close
the algorithm can approach the ground truth. It can be etedugualitatively by over-
laying the reference image data with the transformed flgadisma, and visually in-
specting the result for deviations. The effectiveness eainlestigated quantitatively
by the residual error, which measures the deviation of #esformation yielded by
the registration algorithm from the ground truth. Sincedhmund truth usually is un-
known, a gold standard is used, approximating the grour &siclosely as possible.
A gold standard can be obtained &y, using simulated data, using expert identified
landmarks @2], or recording extrinsic data using a cdledoenvironment €.g,
fiducial markers or optically tracked probe|§)__L|12®l](; For rigid transformations the
residual error can be expressed as the translational aaibra! difference between
the registration result and the gold standard. For elasgjistration it can be quanti-
fied by the root mean square (RMS) error between all pointeerrégistration and
gold standard deformation field:

= \/|‘1/|/V|T(.r) ) da (6.4)

wherebye expresses the RMS errdf,the region of interest; the spatial deformation
yielded by the registration, aridthe gold standard.

A quantitative indicator for the robustness of a registratilgorithm is its capture
range. It is defined as the range of initial poses of the flgati@ta that still deliver
a registration of sufficient quality. Or in other words: haav €an the floating image
be initialized from the ground truth, without causing thgistration algorithm to
fail. When a gold standard is available, a successful registr can be defined as
a residual error smaller than a predetermined thresholdthdrabsence of a gold
standard the success of a registration can be judged by antexp

Within this work, several validation experiments were cactédd. The intrinsic
inaccuracies that are introduced in GPU-based elastistrafion are described in
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sectio 7.2, and the associated computation times agstigated in sectidn 7.4.2.
ChapteB discusses the effectiveness, robustness anibdurévesselness-based
registration. The capture range and computation times\aleated using real clin-
ical data, while the residual error is measured using sitedldata to obtain a gold
standard. Chaptél 9 explores the robustness and clinasibiéty of intra-operative
registration of 3DRA to CT data and 3DRA to MR data.

6.6 Machine-based 2D-3D Registration

6.6.1 Introduction

In the previous sections the registration was driven by mi@gie content, using an
image-based registration algorithm. There are numeroagénbased 2D-3D regis-
tration methods known in the literature for registering fagcopy images to either
CTorMR images]ﬂ@Q]. These algorithms, however, tadenaiderable amount
of time to compute. Further they need a sufficient numberrmafiaarks to be present
in the 2D fluoroscopy image, which is not necessarily alwagsdase€.g, due to
the absence of contrast medium).

In this section, a fundamentally different approach is @nésd: machine based
registration. With the introduction of motorized calil@dtC-arm X-ray angiography,
3D reconstruction of the vasculature came within reachcé&guch 3DRA datasets
are obtained with the same apparatus as the 2D fluoroscopy itléd possible to
calculate a spatial mapping, based on the state of the geo(wetwing incidence
angles, source-detector distanete,) and calibration data, provided that there was no

atient motion between the acquisition of the 3DRA data amatdiscopy datO—

]. This method also allows to obtain a registration, witesre are insufficient
landmarks present in the imagesd, due to the absence of iodine contrast medium
in the fluoroscopy images). A further advantage of machimeel registration is the
fact that it can be computed in realtime. Machine-basedtedion and image based
2D-3D registration have been compared by Baérl. [@]. They concluded that
pre-calibrated machine based registration is highly ateuas long as there is no
patient motion, and a registration error of less than 0.5 nas @bserved in their ex-
periments. Image based registration, though slightlydessrate, proved to be more
robust for (limited) patient motion. A method for deternmgithe C-arm incidence
based on tracking a fiducial was proposed by é&ial. @], who reported a mean
accuracy of 0.56 mm in translation (standard deviation3 @idn) and 0.33in rota-
tion (standard deviation: 0.2}, using a fiducial o8 x 3 x 5 cm. We, however, do
not use any fiducials. We only use the information concerttieggeometry state, as
is provided by the C-arm system.

6.6.2 Calibration

In a CT gantry the X-ray tube and detector array are rotating large rigid ring.
This leads to a stable, easily measurable and predictdbte/esposition of the X-ray
tube and detector array, a prerequisite for tomographien®cuctions. The X-ray
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Figure 6.1: The mechanical components of the X-ray C-arm.

C-arm is of a completely different mechanical constructigith only a few joints
connecting the different parts, see figlire] 6.1. Especilyyfact that load of the
weight of the C-arm (including the X-ray tube and detectetative to the L-arm
differs depending on its angulation and rotation leads t@atian in the bending of
the C-arm. Luckily the bending for a given pose proves to bengrically very
reproducible (sub millimeter).

In order to perform 3D tomographic reconstructions usingr@-equipment (see
sectiof Z.413), calibration methods have been developddtermine the actual po-
sition of the X-ray tube and detector for a given set of medaampropeller, roll and
L-arm anglesG]. The original calibration method=revdeveloped for the
image intensifier systems, see secfiod 2.3, and correctedta pincushion defor-
mation that was caused by the image intensifier tube. Modatmétector systems
do not suffer from this image deformation, and the calilortnly needs to correct
for mechanical bending due to gravity.

The parameters that are measured in the calibration prozede the deviation
of the focal spot location, the deviations of the iso-ceideation and orientation.
All parameters are measured for varying C-arm poses. Thal &pot location is
determined by mounting a grid on the detector at a fixed digtaihis grid contains
a number of bronze markers. The deviation from the expeabtsdipn determines
the actual location of the focal sp@%}.

The location and orientation of the iso-center axes aremdxaby placing a reg-
ular polyhedron (dodecahedron) with marker balls on theerat the iso-center of
the C-arm, and performing a circular movement with the C-alburing the move-
ment X-ray images are obtained, and the center of the magiés ip the images
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Figure 6.2: The projection of a point in 3D space on the detector grid is determined by the
position of the focal spot and the position and orientation of the detector.

are detected. The detection of the markers, which are lligédl nearly isotropically
in the image, is a fairly easy task, since they absorb coreitie more X-ray dose
than any other object on the image. On the detected markergetbimetrical shape
of the dodecahedron is fitted, using an L2-error norm|[136]. cAlibration steps

are fully automatic, and need only to be performed at iretiath and after system
disturbances.

6.6.3 Projection

A common part in 2D-3D registration algorithms is the prti@t of a point in 3D
space on the X-ray detector plane. In order to perform thageption, a4 x 4 matrix
M is defined, such that = M - ¥, wherebyp and¢ are homogenous coordinates.
Vector v is then a coordinate in the 3D CT space, and vegtarcoordinate on the
detector grid (the value ofp’is simply disregarded).

Understanding the projection in mathematical detail i besomplished by con-
sidering the components of the transformation chain séglgraMatrix M can be
decomposed into two matrices:

M=P-R, (6.5)

wherebyP is the perspective transformation defined by the positich@focal spot
(fz, fy, f2), the position of the center of the detecter,, c,, c.), and the detector
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Figure 6.3: The X-ray angiography C-arm system’s geometry, and its degréfeseoiom.

dimensiongd,, d,), see figuré&6l2.

2/d, 0 0 2(fe — c2)/dy
p— g 2/Ody (1) 2(fy _Ocy>/dy (6.6)
0 0 1/(fz - Cz) 1

Matrix R describes the viewing incidence of the X-ray C-arm geometng is
determined by the L-armA), the propeller R,) and the roll rotation &) of the
C-arm, and can be expressedfas- R, - R, - R, see figur€6]3. Note that the order
of the matrix multiplications is given by the mechanics & tb-arm system.

R=R,-R,-R. =
1 0 0 0 cos@ 0 sinf 0 cosy —siny 0 0
0 cosa —sina 0 0 1 0 0 siny cosy 0 O
0 sina cosa O —sinf3 0 cosfB 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

The anglesy, 5 andy are corrected for gravity effects, using the calibratiotada
as explained in the previous section. Now that maliixis established, expressing
the relation between the 3D space and the detector spaceanveraject any given
position immediately on the detector grid.



Chapter 7

GPU-acceleration in Elastic
Image Registration

This chapter is partially based on the following papers:

e Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetenfci&fit GPU-Accelerated Elastic
Image Registrationln Proc. Sixth IASTED International Conference on BIOMEBICENGI-
NEERING (BioMed)February 13-15, 2008, Innsbruck (Austria), pp. 419-424

e Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetenzurscy of GPU-based B-Spline
Evaluation.In Proc. Tenth IASTED International Conference on COMPUTEHRAPHICS AND
IMAGING (CGIM),February 13-15, 2008, Innsbruck (Austria), pp. 117-122

e Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetenfici&it GPU-Based Texture Inter-
polation using Uniform B-Splineslournal of Graphics Toolsyolume 13, Number 4, pp. 61-69,
2008

7.1 Introduction

The advantage of elastic intra-patient image registratiar rigid registration is the
fact that it can take local deformation of anatomical suues into account. A cubic
B-spline based deformation field is sufficiently smooth todeldocal elastic dis-
placements of anatomical structuresg( organs or breastﬁbtjb?]. However,
the application of elastic registration during intervenal treatment is still seriously
limited by the considerable computation time, which is deiaed by the very large
parameter space of the elastic deformation.

An approach to reduce the computation time, without chantiie essential algo-
rithm, is the employment of the vast computation power ofrtieelern off-the-shelf
GPU hardware. Though the overall computation power of th&) @Bwadays sur-
passes the capabilities of the CPU, its performance doescata equally well for any
type of algorithm. In the literature there are several mations dealing with GPU-
based elastic registration [138=140], using a piece-viigat deformation field. We
propose a GPU-driven cubic B-spline deformation field, Wwhytelds a smoother
warping, and therefore can be considered to be a more reatistdel for organic
deformations.
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Further we discuss how the capture range of the elastictratiom can be en-
larged. Itis well knownml] that derivative-based optieris €.g, quasi-Newton-
like optimizers) only evolve to the correct solution if thtial position in the param-
eter space is sufficiently close to the optimum. Our appraadastic registration
lends itself very nicely to use derivative information fréanger scale-spaces [142].
This allows the optimization process to take informatioradérger neighbourhood
into account, and therefore is less prone to get stuck ina m@timum.

7.2 Uniform B-spline interpolation

Uniform spline-based interpolation was introduced by mrg@] and has been
described exhaustively by Uns@.lO]. The starting paintainy degree of the B-
spline function forms the B-spline basis of degree 0, alssknas the box function.
We use the variant of the B-spline function that is centeredrad the origin, which
is chosen since its symmetry can be exploited within the GRIgnam:

Ve 0 A

IS
Bo(z) =14 %, |z|=3% (7.1)
0, |z|> %

Any subsequent B-spline basis of degreean be obtained by the recursive con-
volution of the box function with the B-spline basis of degre— 1:

ﬁn(x) = 50@) * ﬂn—l(x), n>1 (7.2)
The derivative of the B-spline basis function can easily beimed by:
0Bn(x
ﬁ(;:ﬁ ) = Bn-1 (55 + %) — Bn-1 (I - %) (73)

Which means that the derivative of a B-spline function of degr, is a B-spline
function of degreen — 1. Further it can be concluded that the B-spline function of
degreen has a non-zero derivative up to theth order, which is a indicator for the
‘smoothness’ of the function.

The integral of the B-spline basis function of degreean be expressed as:

T JFOQ
/ Bu@)de =3 Buia (o: -2 k) (7.4)
. k=0

Spline-based interpolation at a given positiog R can be written as:

s(x) = c(k)Bu(z — k) (7.5)

keZ
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Figure 7.1: Cubic B-spline interpolation. The image coefficientare multiplied by the
weightsw,, (). The weights are determined by the fractional amourdf the present co-
ordinate, and the B-spline basis functi@p. Index: is the integer part of the coordinate.

Or in words: the interpolated valueat a given position: is the summation of the
shifted central B-spling?,,, weighted by the B-spline coefficient$k), which are
located on a uniform (regular) grid.

Since B-splines have limited support, the amount of coeffitsc(k) that play a
role in the interpolation at positiom are quite moderate. It should be pointed out
thate(k) = s(k) is only the case for thetb and Xt order B-spline (corresponding
to nearest neighbour and linear interpolation). The caefits for the cubic B-spline
can be efficiently obtained, using a causal and anti-cautsl (fsee|LT1|0]).

The @h (nearest-neighbour) si(linear) and & (cubic) order B-spline are most
popular. The th and It order B-spline can be evaluated very rapidly, and do not
need any change of sampled values. However often they doroduge a result
that is sufficiently close to natural signals. The cubic Brspis sufficiently smooth,
while its support is still quite local (its width is 4), whiés favourable for the cost of
the interpolation. Since the deformation of organs andradhatomical structures is
typically rather smooth, we chose the cubic B-spline to nhode deformation field.

7.2.1 Cubic B-spline interpolation

Evaluating cubic B-spline interpolation for any given gimsi involves the weighted
addition of the four adjacent coefficients (see fiduré 7.1jictv allows equatiof 715
to be rewritten as:

ss(t+a) = wola) cli—1)4+wi(a)-c(i)+ (7.6)

wa(a) - i+ 1) +ws(a) - c(i + 2) '
whereby the weights depend on the fractional amountof the present coordinate,
and on the cubic B-spline basis function. More specifically:

wo(a) = Bz(—a—1)

wi(a) = B3(—a)

ws(a) = Asll-a) (77
wy(a) = [5(2—a)
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7.2.2 GPU-accelerated cubic B-spline evaluation

Sigg and HadwigeEiB] have described how cubic B-splinerpulation can be per-
formed efficiently by the GPU. Their method is based on deasimg the cubic
interpolation into2”V weighted linear interpolations, instead4f weighted nearest
neighbor interpolations, whereldy denotes the dimensionality. Since linear interpo-
lations are hardwired on the graphics hardware, they carefermed much faster
than addressing the corresponding set of nearest neighdsanps.

The basic idea can be understood by considering 1D linearpiokation, which
can be expressed as follows:

si(i+a)=(1—a) so(i) +a-sp(i+1) (7.8)

with i € N being the integer part of the interpolation coordinate and R being
the fractional part in the rande, 1]. Building on this equation, the weighted addition
of two neighbouring samples can be rewritten to be expreasealweighted linear
interpolation:

a-so(i)—l—b-so(i—l—l):(a—l—b)-sl(i—l—%ﬂ)) (7.9)

Using equation 719, equatién 7.6 can be decomposed into sighted linearly
interpolated lookups:

83(i+(¥) =4go- Cl(i+h0) +g1 . Cl(i+h1)

go = wo + Wy (7.10)
g1 = wa + w3

ho = (w1/g0) — 1

hi = (ws/g1) + 1

wherebyc, expresses linear interpolation between the cubic B-spliadficients.

This scheme can easily be extrapolated to Malimensional case, whereby
95 = [19ju: and?i;. = > €& - hj,, with & denoting the axis and;, the basis vec-
tor. For 3D cubic interpolation 64 nearest neighbour locgkaoan be replaced by 8
linear interpolations. On modern GPUs that leads to a censiide performance gain.

Sigg and Hadwiger pujy, hg andh; as a function ofx in a 1D lookup texture
(g1 is redundant), and use this texture to obtain the variaplasd / in the GPU
program. They suggest using an RGB texture, consisting 8fsiZnples of 16-bit
accuracy, and using linear filtering between the samples.3Bainterpolation this
approach involves three lookups in this texture, and froarésulting parameters the
eight coordinates for the linear interpolations are caltad.

The lookup table distributes the cubic interpolation into parts in the program-
ming code: the GPU part that performs the actual interpmiatand the CPU part
that creates the lookup table. Furthermore, the lookupetabbne of the sources
of imprecision, since for any value between its entriesdinaterpolation is used.
Therefore, we explore the on-the-fly calculation of the vagsgon the GPU, reducing
source code complexity, and improving the precision.
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Equation[Z.ID shows that the variablggnd 4 are a function of the B-spline
weightsw obtained in equation_4.7. Since the B-spline is composedenfepwise
polynomials, it would appear that a GPU implementation wamolve a number of
undesirable conditional statements, leading to a coreiderslowdown of the GPU
program. However, the conditional statements can be agtpisiace the determi-
nation of the weights is facilitated by the fact thaj is always located in the first
quadrant of the cubic B-spliney, always in the secondstc Since the cubic B-
spline (as well as its derivatives) consist of a single equgter quadrant (see figure
[7.2), the following equations for the set of weights can haldished:

wo (o) 1 ,204)3

wi(0) = S-la? (2-a)

wy(a) = % — %(1 —a)?-(1+a) (7.11)
wy(e) = - (a)?

After the weights have been established, the variaplasd/ can be calculated,
using equatiof 7.10. The CUDA 00@44] below illustratés process for the 2D
case. It should be noted that the code can be ported very éasilg, Cg ], the
OpenGL Shading Language or DirectX HLSL.

__device__ float interpolate_bicubic(texture tex, float x, float y)
{
/1 transformthe coordinate from[O0,extent] to [-0.5, extent-0.5]
float2 coord_grid = make_float2(x - 0.5, y - 0.5);
float2 index = floor(coord_grid);
float2 fraction = coord_grid - index;

float2 one_frac = 1.0 - fraction;
float2 one_frac2 = one_frac * one_frac;
float2 fraction2 = fraction * fraction;

float2 w0 = 1.0/6.0 *» one_frac2 * one_frac;

float2 wi = 2.0/3.0 - 0.5 = fraction2 » (2.0-fraction);
float2 w2 = 2.0/3.0 - 0.5 = one_frac2 » (2.0-one_frac);
float2 w3 = 1.0/6.0 = fraction2 * fraction;

float2 g0 = w0 + wi;

float2 gl = w2 + wg;

/1 h0O = wl/g nmove from[-0.5, extent-0.5] to [0, extent]

0 - 1,
float2 hO = (w1 / g0) - 0.5 + index;
float2 hl = (w3 / gl) + 1.5 + index;

/1 fetch the four linear interpolations

float tex00 = tex2D(tex, h0.x, hO.y);
float tex10 = tex2D(tex, hl.x, hO.y);
float tex01 = tex2D(tex, hO.x, hl.y);
float tex1ll = tex2D(tex, hl.x, hl.y);

/1 weigh along the y-direction
tex00 = lerp(tex0l, tex00, g0.y);
tex10 = lerp(tex1ll, tex10, gO0.y);
/1 weigh along the x-direction
return lerp(tex10, tex00, g0.x);
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Figure 7.2: The cubic B-spline, and its 1st and 2nd order derivative. Note that for afeth
is a single equation per quadrant. We use the variant of the B-spline furtti@iis centered
around the origin, since this allows us to exploit its symmetry in the GPU progra
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7.2.3 Accuracy and performance

In table[ 721 the deviation from the expected interpolatddevis given for the lookup
table based cubic interpolation method and the on-the-fthatk The error is defined
as the normalized pixel intensity calculated by the GPU g minus the intensity
calculated by the CPU using double floating point precisibhe root mean square
of the errors was calculated f6122 pixels. The on-the-fly method is both more
accurate and faster. However, on older graphics hardwafer@2007) the on-the-
fly approach is slightly slower than the lookup table methaelile still being more
accurate.

Table 7.1: Accuracy and timing of cubic interpolation with and without using a lookup table
All measurements were obtained on an nVidia GeForce 9800 GTX.

Method RMS Time (ms)
Lookup table 9.39 -107° 0.96
On-the-fly  8.58-1075 0.74

GPU-based interpolation suffers from another precisisngs Where.g, an 8-bit
texture is filtered, most people would expect that first thightgoring texture knots
are queried, cast to floating point, and then weighted andadthis is, however, not
the case; the texture knots are first weighted and addedhanda&st to floating point,
which limits the precision to the least significant bit of tegture data formalt [59], as
is illustrated in figurg_713. As a consequence, higher acitesaan only be obtained
by using larger texture words, and thus at the cost of textemory consumption.

12 0.54
053
T —— = 0.52
| 051
0.8 I 05
| 0.49
0.48
0.47
0.46
0.45
0.44
0 . 0.43
0 128 256

0.6

0.4

0.2

Figure 7.3: The left graph shows linear interpolation between 0 and 1/65535 usinglzit16-
integer texture (dashed) and a 16-bit floating point texture (solid). Tdi& graph zooms in
on the solid line, showing the limited precision of the fixed point texture ccatebn

A further precision issue of the linear texture interpalatis caused by the fact
that the accuracy of the texture coordinates is limited txedfipoint format with 8
bits of fractional valuem6]. This means that there arey @34 discrete coordinate
positions between two texture knots, as shown in the zoomaphgin figurd 7.3,
which especially is of interest when the knots are far agad, (in a B-spline defor-
mation field for elastic registration). The mentioned testinterpolation accuracy
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(b)

Figure 7.4: (a) A GPU-based B-spline deformed image. (b) A zoomed part of thienkadie.
The artifacts are clearly visible: the transition between the blocks should betemwvhereas
itis jerky.

effects are the cause for the deviations of the on-the-fljhowktn table 71l and is
illustrated in figuré 7K.

Performance measurements of 3D cubic B-spline intermolatising a CUDA
implementation of the on-the-fly method on an nVidia GeF@8@0 GTX, reached
356 - 10° cubic interpolations per second. As a reference, a stifaigtdard CUDA
implementation using 64 nearest neighbour lookups deds.6 - 10° cubic in-
terpolations per second, and simple tri-linear interpotatielivered486 - 106 linear
interpolations per second. Cubic interpolation was alsplémented to run on the
CPU. On an Intel Xeon 5140 2.33 GHz a straightforward impletaiggon delivered
0.45 - 10° cubic interpolations per second and a multi-threaded S$feimentation
managed 0.3 - 10° cubic interpolations per second.

Since the tri-cubic approach uses eight tri-linear intfons per cubic interpo-
lation, a slowdown of factor eight could be expected. Thecirierpolation scores
much better than this, which can be explained by the factttf@mmentioned eight
linear interpolations are spatially very close to each pthed the data, therefore, is
still locally present in the texture cache. This favoraldefprmance aspect, together
with the compact code, makes the cubic B-spline interpmbadin attractive solution
for fast and high quality interpolation on the GPU.

7.3 GPU-accelerated Elastic Registration

7.3.1 Similarity measure

The similarity measurds used in intensity based registration algorithms is a func-
tion of the reference imagd and the floating imagé3, which is deformed to the
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coordinate space of the reference image:
E=FE(AB") (7.12)

whereby BT represents the deformed floating image. Lbe a position in the ref-
erence image space, and the funcﬁiﬁﬁ) be the deformation of the reference image
coordinate system to the floating image coordinate systdmioDsly B™ and B are
connected as follows:

B (i) = B(7(i)) (7.13)

In this chapter we will restrain ourselves to the class obatgms, in which the
similarity measure can be expressed as a sum of contrilsupien spatial element
(pixel for 2D, voxel for 3D,etc). Sum of Squared Differences (SSD) and Cross-
Correlation (CC) are examples of members of this class. dlhss generally can be
written as follows:

(7.14)

icl
Here e denotes the contribution to the similarity measure periapatement, and
i e I ¢ ZN represents the set of-dimensional discrete spatial positiof( pixel
or voxel positions in the image).

The deformatior is driven by a set of parametefs It is this set of parameters
that is manipulated by the iterative optimization algarithin order to obtain a better
prediction of parameters used in the next iteration, theliao matrix, containing
the partial derivatives of the similarity measure to theapagter spacéE/dc; i is
required lLl__4|7] with index denoting the axis. The partial derivative can be decom-
posed into the following produdt [107]:

e(i) OB
7.15
5% HIIIZ(SBT m _ (7.15)

7.3.2 Deformation field

Similar to Kybic and Unsel [107], we use a B-spline drivenatiefation field. The
deformation field then can be described by the following équa

Fi) =i+ Y & Bulif/h—j) (7.16)

Jele

The deformation for positionis given byF(f). The set of control pointg;, which
drive the deformation, is denoted By c Z" . Vectorh, represents the spacing of the
control points, which is required to be integer. Siateadded to the sum, the identity
deformation corresponds to all control points being zémf) is the N-dimensional
tensor product of an uniform B-spline function, wherebipdicates the degree of the
B-spline.
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Figure 7.5: The3-3 and5 - 5 derivative kernel in x-direction, based on the 1st order derivative
of the cubic B-spline (see fig_¥.2). Larger kernels can be used téanatiéaivatives in higher
scales.

Similarity measure| Contribution per pixel | Derivative \
SSD e(i) = (A(4) — B7(i))% | 6e/6B™ =2 (A(i) — B (7))
cc e(i) = A(i) - B™(7) de/8BT = A(7)

Table 7.2: Sum of Squared Differences (SSD) and Cross-Correlation (CC) sitpitaeasures,
and their derivative with respect to the deformed image.

7.3.3 Derivatives

As can be understood from equation 7.16, the derivative efdibformation field
671.(7)/d¢; . simply is a constant term3, (i/h — 7). Since the control points are
evenly spaced, a fixed template of width A can be pre-computed to express this
derivative. During the calculation of the derivative, tleenplate is then shifted over
the image, depending on indgx

In contrast to7], we do not obtain the derivative of thiodmed floating image
analytically. We rather use an image based approach, emglayconvolution with
Sobel-like kernels, which approximates the Gaussian dve. Such a convolution
can be very efficiently implemented to run on the GPU.

The usage of kernels also allows us to determine the derévatidifferent scales,
by scaling the B-spline derivatived;(z/s). Employing a higher scale allows to
increase the capture range of the optimization algorittimeesthe derivative is based
on a wider spatial rang 6]. In order to obtain a deriatifthe similarity measure
that is fully based on a different scale, the floating andregfee image should be
Gaussian blurred. Our first tests show, however, that méeeingd B(Z) /dx), on a
larger scale, by using bigger derivative kernels (see figilie already results in an
enlarged capture range.

The derivative of the first multiplicand in equation_7.15 eegs on the used sim-
ilarity measure. In table"7.2 the derivatives for SSD and @Cgiven.
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7.4 GPU implementation

7.4.1 Similarity measure & derivatives

The GPU implementation of the similarity measure and the firder derivatives
works as follows: for every voxel in the reference image &alris started, and its
contribution to the similarity measure and derivativesakalated. In the thread the
corresponding location in the deformed floating data isiabthby adding the cubic
B-spline driven deformation field to the thread’s voxel aipnate, see equatién 7]16.
Hereby, we can make efficient use from the fact that a cubiplBeslookup can be
decomposed into 8 linearly weighted interpolations, nathan 64 nearest neighbor
lookups, which is much faster on the G, 59], see sesifloA.2 an@ 7.2]3.

When the deformed coordinate has been established, the imtewesities of the
reference and floating datasets are fetched, and the signitegasure contribution of
the thread can be established, see equffion 7.14. The graflibe floating dataset
and its intensities are stored in a single texture with fauries per voxel. In this
way the interpolated lookup at the deformed coordinate idiately yields the in-
tensity and the gradient of the floating datB(%)/dx;, at this particular location.
It should be noted that this gradient image is static durivggdptimization process,
and therefore needs to be calculated only once for the enetiistration procedure.
The gradient image can easily be obtained on the GPU in arnpezgsing step by
convolving the floating image with Sobel-like derivativekels of size3” for every
axis direction. For a multi-scale approach $i¢ kernels can be replaced by larger
kernels of sizg2 - n + 1)V (see figuré_7]5), and the neighbourhood that has to be
sampled, should be enlarged correspondingly. The sampfitizge neighbourhood,
especially for large kernels, can be further optimized gigie principle described in
equatior 7.D.

The derivative of the similarity measure to the control p®ioonsists of three
multiplicands, see equatidn 7]15. Two of those can be astalal for each GPU

—

thread; the gradient of the floating da&tB (%) /dz;, with & = 7(i), and the derivative

-

of the similarity measure to the voxel spaieg¢ 6 B™. The similarity measure(i) and
first order derivatives contributions are stored in an imiediate 3D data array for
each thread. The following pseudo CUDA code encapsulagefirgt pass for SSD:

__global __ void simkernel (float4* output, int3 h)
{
int3 coord = thread. coord;
float3 coordf = nake_float3(coord) + 0.5f;
float3 offset = interpol ate_bspline(deformcoeffs, coordf / h);
float3 deform = coordf + offset;

float4 floating = tex3D(flt_inmg, deform; //gradient.xyz, imge.w
float reference = tex3D(ref_ing, coordf);

float diff = reference - tenp.w

//gradient, pre-nultiplied by derivative of sim neas.
output[coord].xyz = 2 = diff * floating.xyz;
output[coord].w = diff = diff; //sim neas.
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In the second pass, the first order derivativés/oc; , are calculated by mul-
tiplying a subset of the previously stored derivative datténuthe B-spline weights
63(7/5 — 7). The B-spline weights are constant, and can be decompoteal i@nsor
product of three pre-computed 1D arrays of widith,.. The second pass is illustrated
by the following pseudo CUDA code:

__global __ void coeffs_kernel (float4x output, int3 h)
{

int3 coord = thread. coord;

int3 start = (coord-2) * h;

int3 end =4 x h; //support of the cubic b-spline

float4 tenp = make_float4(0,0,0,0);

for (int z = start.z; z < end.z; z++)

for (int y = start.y; y < end.y; y++)

for (int x = start.x; x < end.x; X++)

float tensor = tex1D(tx, x) * tex1lD(ty, y) * texlD(tz, z);
float4 inter = tex3D(internediate_ing, start+(x,y,z));
tenp. xyz += tensor * inter.xyz;

tenp.w += inter.w,

}
out put[coord] = tenp;

7.4.2 Results

In order to characterize the calculation time of the prodadgorithm, the GPU im-
plementation was compared to a straightforward singleatted CPU implementa-
tion and a multi-threaded SSE optimized CPU version. Foveasions we used the
approach that is introduced in the previous section, witipianrolling applied to the
inner for-loop of the second pass. We used a 2.33 GHz quadhotal Xeon with 2
GB memory and an NVIDIA GeForce GTX 260 with 896 MB memory tafpem
our measurements. The reference and floating data was ethtayndeforming a CT
dataset according to a B-spline fieldiéf® randomly determined control points in the
range [-8, 8] and adding some white noise.

We measured the time to obtain the similarity measure artcofider derivatives
by performing a quasi-Newton driven optimization in 40atgons, and averaging the
time per iteration. In order to bring the figures in the sanmgyesfor different dataset
sizes (ranging fron32? voxels 102563 voxels) we divided the time per iteration by
the number of voxels in the reference and floating datasetfigere[7.6. It can be
concluded that the time per voxel depends somewhat on thergrabcontrol points,
and not very much on the dataset size.

On our quad-core machine the multi-threaded SSE algoriterfopned best
when using four threads (figuke V.7 left), which we used fboat other measure-
ments. The speedup factor of the GPU version compared tothee two imple-
mentations is illustrated in figukeT.7 right. The boxplatdigure[Z.8 were obtained
by comparing the time per iteration for similar datasetesiand amount of control
points. They show the median, and the distribution of thedpp factors.
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Figure 7.6: The graphs show the amount of time (in nanoseconds) that is spenayelr

when calculating the similarity measure and first order derivatives for argikensformation.

The y-axis indicates the time, and the x-axis the amount of B-spline tramsion control

points. The lines in the graphs correspond to different dataset sizes.tophgraph shows
the measurements for the straightforward CPU version, the middle grggegents the multi-
threaded SSE implementation, and the bottom graph the GPU version. Notidehscale
and range of the y-axis is different. The measuremente.fpr 128° control points show a
performance improvement for the GPU of a factor 100 over the CPU imittien.
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Figure 7.7: The left graph shows the calculation time per iteration (y-axis, in milliseconds)
for the SSE implementation, using different amount of threads (x-axas). tRreads provide
the maximal use of processing resources at the least amount dieaction the quad-core
machine. The right graph represents the calculation time per iteration (in etlinds, loga-
rithmic scale) for different dataset sizes, usiréf B-spline control points, for the three imple-
mentations.
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Figure 7.8: The boxplots show the speedup factor distribution when comparing theusario
implementations. The left one represents the speedup factor distributios wiutti-threaded
SSE implementation over the single-threaded straightforward CPU versi@middle shows
the speedup of the GPU over the multi-threaded SSE version. The rigpibbdlustrates the
speedup of the GPU over the single-threaded straightforward CPU versio

When we dissected the time per iteration into the time usetth&iirst and second
pass (see table7.3), we discovered that the GPU versionispemsiderably more
time in the second pass than in the first pass.

7.4.3 Discussion

In practise, a good approach has proven to start the retipstia low resolution with
few control points to find large deformations, and to graljuafine the registration
by moving to higher resolutions and more control poi@llmt us considee.g,

a registration that first performs 20 iterations at a resmiudf 64* with 83 control
points, then 10 iterations a8 with 16 control points, and finally 5 iterations at
2563 with 323 control points. The straightforward CPU version would t&88 sec-
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Implementation| Pass 1 Pass 2 | Overhead

SSE 536.8 ms| 474.2ms| 3.1 ms
GPU 96ms | 128.8ms| 1.5ms

Table 7.3: Distribution of the time per iteration over the passes, using datase33fvoxels
and16° control points.

onds (5.5 minutes) to perform this registration, the mihiteaded SSE version costs
31.2 seconds, and the GPU implementation takes 7.4 secé&ingsminutes is un-
acceptable for many interventional and surgical applicesj 31.2 seconds becomes
an issue when the registration has to be performed muliiplest(to compensate for
progressively deforming of the brain), while 7.4 secondyiite acceptable.

7.5 Conclusions

This chapter described how intensity based elastic redisir algorithms, using a
B-spline deformation model, can be implemented efficietdlyun on the GPU. The
various aspects of an efficient and accurate approach tc 84bpline deformation
on the GPU were discussed, and the accuracy issues that imaymuen the GPU
is used for this task were examined. Further, it was dematestthow the similarity
measure, as well as its derivative, can be calculated by #ld, @sing a two-pass
solution. Also it was indicated how a multi-scale approatthe derivative can help
to enlarge the capture range, when employing quasi-Newkeroptimizers.

In order to characterize the calculation time of the progdadgorithm, the GPU
implementation was compared to a straightforward singlestthed CPU implemen-
tation and a multi-threaded SSE optimized CPU version. 8sdata eight different
cone-beam CT datasets of the head of patients with eithei@stenous malforma-
tions or aneurysms were used. The time to obtain the simyilateasure and first
order derivatives was measured by performing a quasi-Newdtiven optimization
in 40 iterations, and averaging the time per iteration. Ildeorto bring the figures
in the same range for different dataset sizes we divideditthe per iteration by the
number of voxels in the datasets.

It can be concluded that the tinpger voxeldepends somewhat on the amount
of control points, and not very much on the dataset size. Gmage a speedup
factor of 50 compared to the straightforward CPU implemigmtaand a factor of
5 with respect to the multi-threaded SSE version was reaciétken these perfor-
mance figures are projected on a realistic calculation saenee can conclude that
the straightforward CPU implementation is too slow for tadli application during
surgery. The multi-threaded SSE approach is suitable fgusar use during the in-
tervention, while the GPU version is considered fast endoghmultiple usage to
correct for progressive deforming of the treated anatomy.






Chapter 8

Vesselness-based 2D-3D
Registration

This chapter is an extended revision of the following paper:

e Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetensséleess-based 2D-3D registra-
tion of the coronary arteriesnternational Journal of Computer Assisted Radiology ancy8ry,
Volume 4, Number 4, June 2009, pp. 391-397. doi:10.1007/3-:069-0316-z

8.1 Introduction

In this chapter we propose a new method for registering theneoy vessel tree in
intra-operative X-ray angiography images to a 3D model efabronary vasculature,
which has been obtained from a pre-operative CTA datasetn\iheh a registration
has been established, a fused visualization of the real-Kmay image stream and
the 3D CTA data can be displayed, which is very useful for gnat of intra-vascular
devices, such as catheters, during the minimal invasiarnrent of coronary artery
disease (CAD). Especially for chronic total occlusion (QT@ a coronary artery,
this procedure has great clinical benefit, since the ocdyxdet of the artery, which
is practically invisible in the X-ray image, still can be detpd in the CTA dataset.
The objective of the 2D-3D registration algorithm is to finsjeatial mapping between
the 2D and the 3D images.

8.2 Related work

2D-3D image registration has a number of clinical applaradi such as radlotherapy

planning and verlﬂcatlomHSZ] surgery planning an nce 5]
and minimal invasive vascular treatment in coronary ar@] perlpheral|m3

[125[156] and neuro-interventions [157-162].

Most algorithms for 2D-3D image registration can be clasdiéis either intensity-

based or feature-based. Intensity-based metl@h@ 0]

directly use the pixel and voxel values to calculate a sirtylaneasure, and require

91
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no or little segmentation. Feature-based methlods [124 /188 158| 161, 162, 171—
E] are based on a segmentation of landmark features imthges. Once this
segmentation has been obtained, the registration stepeqagrformed quite fast. The
segmentation, however, is not always trivial or robust, arrdneous segmentations
can lead to erroneous registrations.

Due to their tubular structure, vessels occupy a relatiseigll fraction of the im-
age, which especially poses a hurdle in intensity-basedémegistration. Therefore
feature-based registration has received particularesteor vascular 2D-3D regis-
tration. Many feature-based methods are based on theite@bsest point (ICP)
approachlES], which relies on minimizing the sum of minirdetances between the
feature points in the reference and projected image. itegi [114] has shown that
the distance transform can be used in ICP-like registratiorder to improve its ef-
ficiency. This approach has been appl@@ 162] to regike neuro-vasculature
by segmenting the vessel tree in the 2D and the 3D image andiagpp stochastic
optimization strategy.

8.3 Method

8.3.1 Spatial mapping

In sectior 6.6 it has been shown how the three dimensionaksparojected on the
detector image of an X-ray C-arm. This projection could bpregsed in a single
matrix M. In order to bring a CT dataset into this three dimensionatepwe need
to establish the relation between the CT frame of referenddlze C-arm space, and
to incorporate this relation into the projection mathik.

The transformation from the frame of reference of the CT skttt the iso-centric
X-ray coordinate frame can be decomposed into two a-priwoidn relations and an
unknown part. The DICOM header of the CT data already tellbays the patient
was oriented with respect to the CT data. We also know how dlient is oriented
with respect to the X-ray equipmenrg.¢, head first, nose up). Furthermore, the
patient is typically positioned to have the center of thetamg of interest €.g, the
coronary arteries) approximately at the iso-center of thrayXC-arm equipment. The
accuracy of this information is quite limited, but it allofes a coarse initialization of
the spatial mapping and reduces the search space of theaggisprocess. The fine
tuning is represented by the unknown part, and it is the tikgeof our registration
algorithm to find a more precise mapping.

Matrix O expresses the a-priori information. The rotational parthis matrix
is extracted from the DICOM information of the CT data. Thenslational part
is established such that the center of the coronary vesseéélnio the CT dataset
corresponds to the iso-centric origin of the X-ray coortirfaame.

Matrix 7" is the rigid registration matrix, which is manipulated chgyithe opti-
mization process. It should be noted that we do not perforaiiaration of the X-ray
equipment to correct for deviations of parameters deltbrethe system, since these
deviations are found to be smaller than the deformatiortsoitaur due to the cardiac
and respiratory motion. Furthermore we rely on the redisinaprocess to correct
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also for the system inaccuracies.

The complete transformatial/’ of a point in the frame of reference of the CT
data to the X-ray detector space is an extension of eqUaftbartl can be expressed
by:

M =P-T-R-O (8.1)

We deliberately put matri’ between matrice® and R, because in this way its axes
are aligned with the axes of the X-ray detector. This is ofontgnce, since the trans-
lation perpendicular to the detectar#xis of the detector) only leads to perspective
zoom, which is very difficult to estimate accurately for daefing structures such
as the coronary arteries of a beating heart. Therefore, therrdo not change this
z-translation in the image-based registration process.

8.3.2 Vesselness filter

The vesselness filter plays a central role in the registratiethod that is being de-
scribed in this chapter. The vesselness filter expressdikditibood that a particular
pixel can be contributed to a vessel-like structure. As stichn be regarded as a
fuzzy segmentation. In our experiments we apply a multieseasselness filter, as
proposed by Frangm4], which will be briefly described isthection. Note how-
ever that our similarity measure is not restricted to thigtipalar vesselness filter,
but can use any filter that enhances the vascular structocesuppresses any other
structure in the image.

The vesselness filter seeks to enhance tube-like strudtutee image. These
structures are identified using the eigenvalues of the HiessatrixH. This matrix,
which contains the second order derivatives of the imagean be written for the 2D
case as:

%L 5%L
dx? dxdy

H= . o 8.2
8°L 8L (8.2)
Sydx 6y?

Now let A; and A\, be the eigenvalues of the Hessian maftix and let them
be ordered such tha#;| < [X\2|. When|A;| is small and|)\:| large, a ridge is
encountered, which is a good indicator for a tube-like stmec When ;| and|)\;|
are of similar magnitude, the encountered structure isab'plvhich is not a property
of vessel structures. To capture these properties, thbrieks’ is defined as:

Ry = -
B =,

(8.3)

Furthermore, the ‘structureness’ of the image is takenaectmunt, which is defined

as:
Se = [Hllr = /AT + 23 (8.4)

This term produces a high response when there are a lot ofeirigajures present,
and a low response for areas with few features (background).
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Using these properties, the vesselness is defined as:

0, A2 >0
e (C3) (e (). ze O

The parameterg andc can be tuned to change the sensitivity of the filter.

To take the various sizes of the vessels into account, teeifilapplied in several
scales. The different scalesre obtained by defining the differentiation used for the
Hessian matrix at each pixel locatidas a convolution with derivatives of a Gaussian
of variable width:

o - w0
EL(@ s) = L(1) * %G(z, s) (8.6)
with the two-dimensional Gaussian at scaldefined as:
Gliys) = 5o 5 6.7)
1,8) = 27r526 s .

The overall vesselness is then assembled from the vessalhédiferent scales:

V(i) = max, (V(;7 5)) (8.8)

8.3.3 Similarity measure

In order to obtain a 3D model of the coronary vessels, theysaggented in the
pre-operative 3D CTA datasets. There are good algorithragadle for this task
(e.g, [176£178)). Furthermore, it is not necessary to excludeuahinteraction,
since this segmentation can be performed pre-operativéign there is less time-
pressure and stress. A reliable and robust segmentatitie @D X-ray angiography
images can be more challenging, because of the projectiveenaf these images.
Also, due to the intra-operative acquisition of the X-rayages manual interaction
or correction is not desirable. To overcome these limitetiove introduce a method
which does not require an explicit segmentation of the 2[a)image.

We perform a distance transform (DT) on the projected 3D rhiod=ach iteration
of the optimization process. The fact that the DT is cal@dan every iteration differs
from DT-based ICP, where the points of the 3D model are ptejeon a static DT of
the segmented 2D image. It is necessary to recalculate thbézause the pose of
the 3D model changes in each iteration. The Distance Treamsfomputes for each
pixel positions the distance to the nearest feature pgiitt a set of feature pointg,
which is the set of projected 3D points in our case:

DT (i) = mingeq||§ — 7| (8.9)

To achieve a rapidly declining distance weighting functidrihat yields only a
high response close to the feature points, the squared Dibisested from a constant
valuec (see figuré_8]1):

D(7) = max (o, c— DT(?)?) (8.10)



8.3 Method 95

|

(@) (b)

Figure 8.1: (a) Inverted Distance Transform of the projected coronary vesselsiBEhCT
dataset. (b) Inverted Squared Distance Transform, see eqiatioh 8.10

Figure 8.2: (a) X-ray image of the coronary arteries. (b) Vesselness transfdrineoX-ray
image.
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A vesselness filteb, as described in sectidn 8.B.2, is applied to the 2D X-ray
image (see figure_8.2). Our similarity measure can then beeszpd as the sum of
the product of the distance weighting functibrand the vesselne3sover all pixels
in the image:

S=> D) V() (8.11)

iel

8.3.4 Optimization strategy

The search space, consisting of the multi-dimensionalrobwériables of the spatial
mapping, is determined by two degrees of translational aneetdegrees of rota-
tional freedom (rigid registration). The process of prtijeg 3D data on a 2D plane
implies a considerable reduction of information. As a rethutre are many incor-
rect transformations that yield a relatively good simtlarneasure €.g, projecting
not corresponding vessel branches on each other), and féwoaboptimum in the
search space.

We use a stochastic optimization approach, since such agipes are less likely
to get stuck in a local optimum. The used optimization stateses a population of
samples in the search space. In every iteration of the agdiioin algorithm the:
best samples are taken, and they each createw samples. The: ‘children’ of
a sample are randomly generated according to a Gaussiarahdistribution. The
standard deviatiom of the normal distributed random samples is multiplied with
a reduction factor for each iteration, since we assume that the global optinmum i
closer as we progress.

The initial o can differ for each dimension of the search space. In ourweasee
a significantly smallee for the three rotation variables than for the three traisiat
variables, since we can perform already a quite good estmédr the rotation of
the 3D model, based on the DICOM information of the CT datal the viewing
incidence of the X-ray C-arm system.

8.4 Results

We evaluated the presented similarity measure with redpeatcuracy and cap-
ture range, comparing it against ICP-based registration ogtimization strategy a
standard Powell optimizer and the stochastic optimizasioategy described in sec-
tion[8.3.4 were used.

The accuracy and capture range was assessed using sinddtdeth order to do
this, the coronary arteries were segmented from a realama@IT data set, as well as
the heart mask. From this CT dataset a Digitally ReconsttliBtadiograph (DRR)
was constructed, which simulates an X-ray projection of3fi@ata. In angiographic
X-ray images the contrast medium is injected intra-vastulavhile the cardiac CT
images are obtained with intra-venously administeredrashimedium. Therefore,
the DRR was generated with different X-ray attenuation faciehts assigned to the
different segments, see figlirel8.3. The registration pedsghen started with a given
offset translation and rotation. The advantage of the sitedldata is the fact that the
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(@) (b)

Figure 8.3: (a) Segmented cardiac CT dataset. (b) A Digitally Reconstructed Ragibgra
(DRR) of the same dataset. (c) A DRR, using different X-ray attenuatigificgents per seg-
ment, simulating X-ray angiography.

gold standard transformation is known, and therefore tier exf the registration
process can be quantified, see téblé 8.1.

Using the simulated data, we established a maximum capangerof 14.1 mm
translation and 52rotation for the ICP-Powell combination, whereby the cagptu
range is defined as the set of initial translations and matith respect to the gold
standard that still yield a successful registration. Thesetess-Powell combination
delivered a capture range of 43.8 mm and 22dspectively, and the vesselness-
stochastic combination reached 71.1 mm and 20:Bhe average calculation time
for the ICP method was only 82 ms, while vesselness-Powatbagation took 2.7
seconds and the vesselness-stochastic combinationatelddior 11.0 seconds.

We further investigated the capture range using clinicéh di@m four pairs of
2D X-ray images and 3D coronary vessel trees, segmenteddaodiac CT data. It
should be mentioned that it is impossible to establish anative gold standard for
such real world data, especially since the cardiac phashtrdiffer somewhat for
the 2D and 3D images of the pair. Therefore we proceeded ifotlosving way: A
large number (about 30 per dataset pair) of registrations wiarted from different
starting positions (translation and rotation). The résgltransformation was then
labelled either as 'successful’ or 'erroneous’ by an expdihe largest successful
registration in sense of translated distance and rotatgl avas taken as a measure
for the capture range, see tablel8.2.



Sim.meas.
Optimizer

ICP
Powell

\esselness
Powell

Vesselness
stochastic

Translation (mm)
Rotation

Z=144,0=150
z=1.31°0 = 1.00°

7 =042,0 =0.12
z =0.70°,0 = 0.77°

Z=054,0 =047
z =1.06°,0 = 1.00°

86

Table 8.1: Residual error of a successful registration, measured using simutksttsd The same set of initial transformations was used for all methods.

Sim.meas. ICP ICP Vesselness \Vesselness
Optimizer Powell stochastic Powell stochastic
Pair 1 0.0mm, 0.° 7.8mm, 8.72 | 83.3mm, 21.7 | 76.9mm, 40.3
Pair 2 21.8mm, 17.5 | 33.1mm, 16.6° | 68.7mm, 31.9 | 62.0mm, 41.5
Pair 3 12.9mm, 25.2 | 11.2mm, 14.5 | 49.7mm, 23.8 | 60.8mm, 37.3
Pair 4 12.1mm, 11.0° 20.2mm, 15.2 30.8mm, 30.3 71.0mm, 51.7

Table 8.2: The maximum capture range was established using clinical datasets.

uonensibay qs-az paseq-SSaulaSSaA
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8.5 Discussion

In this chapter a novel feature-driven 2D-3D registratiatmod has been introduced.
This method is based on the iterative stochastic optintmadf our similarity mea-
sure, which relies on the 3D coronary vessel model, obtafrad a cardiac CT
dataset, and a 2D X-ray image of the coronary arteries. Théasity measure is
obtained by applying a vesselness filter to the 2D image, leenweighting it with a
function based on the squared distance transform of theqirg 3D vasculature.

It has been demonstrated that this similarity measure dotpes the Iterative
Closest Point (ICP) method, both in sense of capture randeeaiability. This can
mainly be contributed to the fact that we do not perform arnieitfinary segmen-
tation of the vessel structures in the 2D X-ray image. Thigremtation was rather
trivial in many other publications, mainly dealing with gl Subtraction Angiogra-
phy (DSA) images€.g, [@,Ll_lb]), which are not available for the coronary aeter
due to the heart and respiratory motion. In our approach phoédsegmentation is
avoided by using directly the vesselness image in our siityileneasure. Further-
more, the squared distance transform guarantees that esgelstructures close to
the projected centerlines contribute to the similarity suga, while it is wide enough
to maintain a large capture range.

It has been shown that the stochastic optimization apprealdrges the capture
range, since it is not likely to get stuck in a local optimum fimm the global op-
timum. Future work might include evaluating other stocltagtobal optimization
strategies, as.g, proposed by Kennedy and Eberh180].

The test results have shown that the proposed registrapiproach can be cal-
culated rather quickly, yielding calculation times simita distance transform based
ICP. The efficiency is reached by the limited extent of theasgd distance transform,
which can be calculated within far less iterations than alegdistance transform.
The multi-scale vesselness filter, which is rather expengivcalculate, only needs
to be obtained once for the entire registration processtlam@fore does not pose a
significant bottleneck.

When we started our search for a 2D-3D registration approacthé& coronary
arteries, we quickly abandoned intensity-based methadsuse of their limited cap-
ture range for registration of vessel structures (intgAsésed methods work best
when there are large overlapping landmark areas, whichtia pooperty of the vas-
culature). After initially disappointing results with feeme-based registration, using
a binary segmentation of the vessels in the 2D image, we ajgedlthe novel and
robust approach sketched in this chapter. Our test redts that it performs very
well for the task of 2D-3D registering of the coronary vegseg.
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Chapter 9

Real-time 3D Multimodality
Fusion in Neuroangiography

This chapter is partially based on the following papers:

e Daniel Ruijters, Marijke Vermeer, Anna Vilanova, and Pauétems. Robustness of Mutual Infor-
mation Based Intra-Operative Registratidfitst Annual Symposium of the IEEE/EMBS Benelux
Chapter,December 7-8, 2006, Brussels (Belgium), pp. 171-174

e Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Migtefg, Bart M. ter Haar Romeny,
and Paul Suetens. 3D Multi-modality Roadmapping in Neurazgrgphy. Proceedings of SPIE
- Volume 6509, Medical Imaging 2007: Visualization and lexéguided Procedures;ebruary
2007, San Diego (USA), pp. 65091F. doi:10.1117/12.708474

e Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mitej, Bart M. ter Haar Romeny, and
Paul Suetens. Real-time integration of 3-D multimodality daiaterventional neuroangiography.
Journal of Electronic Imagingyolume 18, Issue 3, July-September 2009.
doi:10.1117/1.3222939

9.1 Introduction

To the present date, the fluoroscopic image with the livermédion about endovas-
cular interventional devices, and soft-tissue imagesdh(agcCT or MR) are visualized
on separate displays. This means that the clinician hagtorpea mental projection
of the position of the endovascular device on the soft-tisgata. It may be clear
that a combined display of this information is of great adage, since it reliefs the
clinician of performing this task. Furthermore, a fused gmallows more precise
navigation of the endovascular devices, since these deuice visualized together
with pathologies and contextual information, present engbft-tissue data. In order
to provide the maximum benefit of such an augmented imagdivéanduoroscopy
data and the soft-tissue data have to be combined in real-tuith low latency and a
sufficient frame rate (15 or 30 frames per second, dependitigeoacquisition mode).
Since the visualization is targeted at the usage during t@nviention, it should not
only be fast, but also easy to interpret and the manipulaifdhe image should be
interactive and easy to use.

103
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9.2 Method

9.2.1 Pre-processing

Our approach relies on the acquisition of a 3DRA dataseteabé#iginning of the in-
tervention. The 3DRA dataset is co-registered to a saftiéisdataset, such as CT
or MR, which has been obtained prior to the interventiergy( for diagnostic pur-
poses). Using 3D image registration during interventidredtment poses a number
of constraints on the registration algorithm. Especidlhg calculation time of the
algorithm has to be limited, since the result of the registraprocess is to be used
during the intervention. In order to reduce the calculatiore, the GPU is employed
to accelerate the registration algoritim [181,/182].

3DRA reconstructions may have a very high spatial resaiuf@ovoxel can be as
small as 0.1 mm), but tend to be rather noisy in the dynamigeasee sectidn 2.4.
To reduce the sensibility to noise we use a limited number3@)of grey level bins
for the 3DRA dataset. As a result of the limited dynamic rarige vessels, bones
and sinuses are the only structures that are well delincatetican serve as land-
marks. The registration process is primarily determinethieyfacial structures, such
as the eye sockets, the nose, the sinuses, etc. It is thefonportance that such
structures are contained both in the 3DRA dataset, as willeasoft-tissue dataset,
see figur@ 9]1.

(b) (©)

Figure 9.1: (a) A slice out of a 3DRA dataset, showing the limited dynamic range. Titdevis
anatomy are the sinuses, the skull, and a contrast medium filled aneuflysi CT dataset,
containing the facial structures. (c) A CT dataset, missing a major parteofbial structures,
which hinders the registration process.

Since we focus on cerebral applications, and there are onlied elastic trans-
formations of the anatomical structures within the headcaveuse a rigid registration
(i.e., only a global translation and rotation, see chalpter 6)idRiggistration further
has the property that it can be calculated relatively robustfast. Typically, a reg-
istration algorithm consists of a multi-dimensional semity measure, indicating the
quality of a given spatial mapping, and an optimization athm, which searches
the optimum (maximum or minimum, depending on the measur&)esimilarity
measure. The search space consists of the control variafiites similarity measure,
which are in the case of rigid registration: translationtie -, y- and z-direction,
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and rotation around the-, y- and z-axis. We use Mutual Information as similarity
measure, as described by Massal. [@], because it performs very well on inter-
modality registration and does not demand any a-priori kadge of the datasets.
In order to further limit the calculation time, we employ tRewell algorithm |LT1|6]
as optimizer, which is a so-called local optimizer. Locatimization algorithms
are generally faster than global optimizers, but they dogusirantee that the over-
all optimum is found. To assure that the correct optimum isth the image-based
registration is preceded by an optional rough manual negish, which is to be per-
formed by the clinician. Note that this pre-processing $tepto be performed only
once.

A further pre-processing step forms the creation of a tiidetgd mesh, represent-
ing the vessel tree. In order to obtain such a mesh, the weasekegmented in the
3DRA volume, which is a fairly easy task since the iodine casttmedium absorbs
more X-ray than any other substance present in the dataset the segmented data
a mesh is extracted by applying the marching cubes algo@].

9.3 Clinical use

In order to visualize the data the techniques described aptei{4 are being used.
The availability of the live fluoroscopy image stream, conglal with the vasculature
segmented from the 3DRA dataset and the registered ssftetiCT or MR) dataset,
during the intervention is of great clinical relevance. Tuenbination of the fluo-
roscopy image with the 3DRA vessel tree provides the adgartzat the guide wire
and catheter position can be located with respect to theMess, without additional
contrast injection (see figuke 4.5d), while the C-arm positind the X-ray source to
detector distance can be altered frekly [131]. Even dwiggrotations of the C-arm,
the machine-based 2D-3D registration will always be up te,dsee sectidn8.6. The
additional visualization of the soft-tissue data allowstorelate the position of the
guide wire and catheter to pathologies which are only wsiblthe soft-tissue data.
Especially the fact that this information is available ialFféme makes it very suitable
for navigation.

The slab with the soft-tissue data can be moved, its widthbeachanged and its
orientation can be rotated freely, to visualize differeattp of the anatomical dataset.
In this way the optimal view of a certain pathology can be deieed. The imple-
mentation of the rendering, running on the GPU offers irtiéva speed throughout.

The integration 3D multi-modality data can be used in thiofaihg treatments:

e Navigation to the optimal position for intra-arterial pele injection in en-
dovascular embolization of intracranial neoplastic tissand arteriovenous
malformation (AVM) treatment, prior to stereotactic raha surgery.

e Navigation to the optimal position for intracranial stexgtin cases where aneurysms
are pressing on surrounding eloquent and motoric braingiss

e Navigation in the vessel portions to be embolizeé.ig, hemorrhagic stroke.
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e Navigation in the vessel segments where thrombolytic theshould be ap-
plied ine.g, ischemic stroke or vascular vasospasms.

9.4 Results

9.4.1 Robustness

In order to validate the applicability of our registratigppaoach in the clinical prac-
tice, we investigated the capture range of the GPU-acdebteautomatic registration
algorithm, using clinical data. In this context we defined ttapture range as the
extent of the parameter search space that can serve asostisidpfor the optimizer,
and still evolves to a correct spatial transformation betwine datasets, see chapter
6. If this extent is too small, the manual pre-registrati@edimes too cumbersome
and time-consuming to be performed during an intervention.

First we determined a gold standard transformation foryedataset pair. This
was done by manually defining a starting position that waBcserfitly close to the
correct transformation, and then let the registration rtiga run. The results were
then visually inspected, to assure that the transformatamiindeed correct. All gold
standard transformations were of sub-voxel accuracy.

To establish the range of the search space where the algdoghaves robustly,
we made the following assumption: if a registration procststed from a translation
in a certain direction, evolves to the gold standard tramsédion, each registration
attempt from a smaller translation in the same directiorlde assumed to lead to
the gold standard transformatidrg., the capture range is convex without any holes.
Hereby two transformations were considered to be the sagaelf of the components
of the rotation matrix differ less than a particutgt (we usedir = 0.05), and the
translation differs less thai- (we usedir = 0.5 mm).

Based on this assumption, the robust translation extentdetesmined, using
an approach, similar to a binary sea184]; The gold stethttansformation was
applied to the datasets, and one dataset was translateditamairectiont, with |d|
being of unit length. If performing the registration prosésdeed leads to the gold
standard transformation, the process was repeated wittetigation vector doubled.
If not, the translation vector was halved. This process wasicued until a bounding
interval (b1, b2), with b; < by, was found, whereby a translationigfstill was within
the capture extent, arig not. Then, iteratively a new limit = (b; + b2)/2 was
tested. If a registration started from a translation witbtgeb - d evolved to the gold
standard transformatioi,was within the capture range, ahdwas set ta@ for the
next iteration. Otherwis&, was set td. In this way the accuracy of the boundary of
the capture range was doubled (the uncertainty was halrexl)ery iteration.

The iterative process was continued until the boundary efctpture range was
found with an accuracy of 5 mm. Using this method, the robusidiation range
was determined for every patient in 14 distinct directiosee(figuré 912). A similar
scheme was used to determine the robust rotation extemditbax-, y- andz-axes
in both directions. The robust rotation range was deterdmi¢gh a precision of 1.

The capture range with respect to translation and rotatierewetermined for
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Figure 9.2: The translation of the datasets was tested in all 14 depicted directions.

dataset pairs obtained from 11 patients; 7 patients with RBLQT dataset pair,

and 4 patients with a 3DRA - MR pair. 88% of the CT datasets eanepistered

correctly when the registration process is started witlinndn translation to the
gold standard transformation with the 3DRA dataset, seed[8B. 67% manage to
robustly register within 50 mm translation. The results Wémed are comparable,
or slightly better than published by Stancaneial. HE]. The results of starting the
registration process with the datasets rotated to each, ithikustrated in figuré 914.

88% still of the CT datasets can be registered correctlyd@DRA dataset when the
rotation is 20, 74% when the rotation is 30

The results for the 3DRA-MR dataset pairs are shown in figdiie Onfortunately
not all MR datasets fulfilled the criteria that were desdiilie sectio 9.2]1 (not
enough landmark regions present, slices too far apart).edery more than 60% of
the registration attempts still succeed when the tramsiasi 10 mm.

The accuracy of the calibrated machine-based 2D-3D regjstr was measured
on five Philips Allura C-arm X-ray angiography systems. Tégistration was least
accurate at the corners of the 3DRA reconstruction volurhe.raximal deviation of
the 2D fluoroscopy image and the projected 3DRA image was éhdtthe corners
of the reconstruction volume, and the average deviatiohigtdcation was 0.2 mm,
which is well within the clinically acceptable range.

9.4.2 Computation time

The GPU implementation of the Mutual Information based s&gtion algorithm
takes less than 8 seconds to register the 3DRA dataset asdftiéssue dataset in
the pre-processing step. The extraction of the mesh thatsepts the vessels, the
another pre-processing step, costs 300 ms. Overall it casobeluded that these
figures are very acceptable and do not hinder the interveaitjrocedure, especially
since the pre-processing step has to be performed only once.

Given a certain set of viewing incidence angles, it takes gerhié,.s to calculate
the matrix, which expresses the 2D-3D registration betwberBDRA dataset and
the fluoroscopy image. It is important that this part can Heutated in real-time,
since it should be updated on-the-fly when the geometry pbseeoX-ray C-arm
system changes. The augmented visualization, consistiagresh extracted from
a 2563 voxel 3DRA dataset, a Volume Rendered slab frorbé? - 198 voxel CT
dataset and the fluoroscopy image stream, can be displayedaaerage frame rate
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Figure 9.3: The percentage of 3DRA-CT dataset pairs that can be registeredatty;rfor a
given initial translation. The upper line shows the results if the two most difficuegister
patients are not taken into account. The lower line indicates the results foatdrs.
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Figure 9.4: The percentage of 3DRA-CT dataset pairs that can be registeredatty;rfor a
given initial rotation. Upper line: without the two most difficult to register patéenLower
line: the results for all patients.
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Figure 9.5: The percentage of 3DRA-MR dataset pairs that can be registeredatly;rfor a
given initial translation.
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of 38 frames per second. All figures were measured on a XeoGB2® machine
with 2 GB of memory, and a nVidia QuadroFX 3400 graphics caitti @56 MB of
memory, using the datasets that are depicted in figufe 4.5.

9.5 Discussion

Being able to see the live fluoroscopy image within the cardéthe 3D vasculature
and soft-tissue information is of great clinical relevancehe combination of the
fluoroscopy image with the 3DRA vessel tree adds value, gimeguide wire and
catheter position can be located with respect to the vesselvtithout additional
contrast injection (see figuke 9.6b dnd]9.6¢), while the i@-position and the X-ray
source to detector distance can be altered freely. Evengluoiations of the C-arm,
the machine-based 2D-3D registration will always be up te.dghe clinical interest
of this so called 3D-roadmapping has been described bé@.[ The additional
visualization of the soft-tissue data, allows correlating position of the guide wire
and catheter to anatomical information and pathologieshvare only visible in the
soft-tissue data. The fact that this information is avddaib real-time, makes it
especially suitable for navigation.

The addition of soft-tissue visualization to the 3D-roagiag technique, and
especially high-quality MR datasets, brings extra infaiorathat may be important
for the operators decision making and increase safety glthi@ procedure as well
as shorten the operating time. In embolisations of bragriastenous malformations
(b-AVMSs) or intracranial tumors using liquid adhesives artirles, the exact posi-
tion of the catheter tip is crucial. The obvious goal is to efige the pathological
structures and avoid spilling over to normal vessel supglyiormal brain tissue. The
complicated vessel anatomy can in these situations beutiffccomprehend and the
3D multimodality roadmapping may in such instances provectof great value, es-
pecially since the 3D volume is possible to freely rotatehvaibntrols located at the
interventional table. The technique may also be of gredstasge for targeting areas
of a b-AVM that are to be partially embolised thereby avoidgo-called piece-meal
embolisation, as well as for avoiding high risk treatmenisel to eloquent areas of
the brain. The exact position for delivery may also be imgatrfor intra-arterial de-
livery of other compounds i.e. cytostatic agents for tumgrewth factors for stroke
and degenerative brain disorders, a field that at the moradantgely developing and
growing.

The morphological MR or CT dataset holds the soft-tissuectires relevant
to the procedure as well as some pathological processemthanot be visible in
the 3DRA or fluoroscopy data. The most relevant parts of tlfietissue data can
be visualized by choosing a slab (see figuré 9.6), whoseitogadrientation and
thickness can be interactively altered by the operatoratiare. Alternatively, it is
possible to select a representation of the soft-tissue ddiareby an octant, quarter,
or half is cut open (see figufe 9.7). The location and orieanadf the intersection
can be interactively changed. The 3D-3D registration, Wwhi@as calculated in the
first pre-processing step, is applied to the position of tfetsssue data.
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Figure 9.6: (a) An MR image, showing an AVM and impacted brain tissue, indicated by the
yellow arrows, (b) the live fluoroscopy image without contrast mediuswshhe guide wire,

but does not reveal its relation to the vasculature and the soft-tissue g ¢uttroscopy image
mixed with the vessel tree from the 3DRA dataset adds the vascular cantbgtlive data,

(d) the fluoroscopy image, the 3DRA vasculature and a slab from the MR Tae MR slab is
positioned parallel to the view port at the guide wire tip.
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Figure 9.7: (a) A quarter is cut out of a soft-tissue dataset, while the 3DRA vessets/are
layed with the live fluoroscopy information, (b) a zoomed fragment of therlafie, showing
the micro guide wire.

9.6 Conclusions

In this chapter the application of fusing real-time fluomsg 3DRA data and soft-
tissue data into a combined image, and its usage within penlovascular proce-
dures has been presented. The combination of the fluorasicoage with the SDRA
vessel tree, known as 3D-roadmapping, offers the advatihagéhe spatial relation-
ship between the endovascular device and the surroundgsghmaorphology can be
determined, without additional contrast injection, witiie position of the C-arm ge-
ometry can be altered freely. The method is especially tadgs the use in minimally
invasive vascular procedures, and distinguishes itséffarfact it adds contextual in-
formation to the fluoroscopy images and 3D vasculature.

The steps necessary to achieve this visualization have destribed. First an
image-based registration of the 3DRA dataset and the issfig dataset has to be
performed. We have demonstrated that the capture rangdficient for interven-
tional usage, and that due to the acceleration by the grayblaicware, the calcula-
tion time is very limited. The machine-based registratieteen the fluoroscopy
image and the 3DRA data only depends on the geometry incidmmgles, the X-ray
source to detector distance and the calibration data. Itbeaeasily calculated in
real-time. Also we described how the visualization can bplémented to employ
the possibilities of modern off-the-shelf graphic cardgveing real-time display of
the registered data with the live fluoroscopy image streannthEr possible clinical
applications have been identified, and it has been demdedtreow the presented
method can be employed in those applications.

The strength of the described approach lies in its real-tiaterre, which is pri-
marily achieved by the on-the-fly 2D-3D registration, anel @PU-accelerated fused
visualization. The interactive real-time aspect contelsuto the 3D perception of
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the anatomy and pathologies during an intervention. Theceli feedback has been
very positive; the 3D roadmapping technique is consideneleable method for ac-
curate navigation and helps to reduce x-ray dose and userofiidodine contrast

agent [Ll_allm6]. A possible disadvantage of the presertiodeas the fact that pa-
tient motion will render the 2D-3D registration to be inhliTherefore future work

could combine machine-based registration with imagedbasegistration to correct

for patient motion.



Chapter 10

Multimodal Registration in
Needle Guidance

This chapter is based on the following papers:

e Daniel Ruijters, Laurent Spelle, Jacques Moret, Drazerddn® Robert Homan, Peter Mielekamp,
Bart M. ter Haar Romeny, and Paul Suetens. XperGuide: C-aradié&uidanceln Proc. Euro-
pean Congress of Radiology - ECR 2088enna (Austria), C-591, March 7-11, 200Byuropean
Radiology,Volume 18, Supplement 1, February 2008, p. 459. doi:10.10046-008-0003-0

e Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mitej, Bart M. ter Haar Romeny, and
Paul Suetens. Frame-less C-arm Needle GuidaM¢€CAI 2008 Workshop on Needle Steering:
Recent Results and Future Opportuniti8eptember 6, 2008, New York (USA)

e Laurent Spelle, Daniel Ruijters, Drazenko Babic, Robertidn, Peter Mielekamp, Jeremy Guiller-
mic, and Jacques Moret. First clinical experience in apply®{perGuide in embolization of jugu-
lar paragangliomas by direct intratumoral punctul@ernational Journal of Computer Assisted
Radiology and Surgeryolume 4, Number 6, November 2009, pp. 527-533. doi:10.100B43-
009-0370-6

10.1 Introduction

Paragangliomas, also known as glomus tumors, are hightylarized neoplasms of
neural crest origin that arise from the glomus cells, whighchemoreceptor organs
in the walls of blood vessels that have a role in regulatirgpdlpressure and blood
flow. Glomus cells are located in aortic bodies near the @arith and the carotid
bodies, situated close to the bifurcation of the carotidrags. The glomus cells are
a part of the paraganglion system composed of the extraraldparaganglia of the
autonomic nervous system, derived from the embryonic heteat. Paragangliomas
are most frequently located in the abdomen (85%) and thexx{@2%), and only 3%
are found in the head and neck region. Glomus tumors arepteuiti 25% of patients,
and are usually considered benign. However, in about 3%sa&fsctney are malignant
and have the ability to metastasi 87+ 189].

Glomus tumors can be treated by surgical excision, radidkierapy, or a combi-
nation of those. Especially for large tumors, surgical reah¢s often associated with
substantial intraoperative bleeding rate, due to theicuas nature@@@%]
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In order to reduce the intraoperative blood loss, preoperéiansarterial emboliza-
tion has proven to be beneficial [195-199]. However, in maases the devascular-
ization remains incomplete because of the extensive argjib@acture and consider-
able arteriovenous shunting of the lesions. Thereforectlipercutaneous puncture
and the injection of acrylic glue or cyanoacrylate has bezstdbed as an effective
alternative|[200-205].

In this chapter we describe a novel approach to the planditihggeguncture trajec-
tory, and the interventional needle guidance. Our methiiesren C-arm fluoroscopy
for the real-time guidance, while we also intend to integgatft-tissue information, in
order to use an optimal path. Since the proposed method dbeslyon a stereotac-
tic frame or markers, the strain on the patient is reducedl tla@ procedure duration

shortened?].

10.2 Methods and materials

10.2.1 Procedural technique

Prior to patient puncturing, the optimal needle paths aesvdron a preoperative
computed tomography (CT) dataset. Determination of thenm@gtneedle trajectory
is initiated by marking the ultimate needle point, locatadhe lesion center (fig-
ure[I0.1). A line is drawn in the 3D patient space towards kirelsoundary, contin-

uously checking whether it traverses any vital anatomittakttures or impenetrable
bones.

(b)

Figure 10.1: The target point (green) is marked in the glomus tumor. (a) Axial vidyy. (
Sagittal view. (c) Coronal view.

When the line is defined, the puncture point located on thepiskin is defined
as the entry point of the virtual trajectory (figure_10.2). eTinspection of the line
is performed by doing soft tissue stacking perpendiculdhédine’s spatial location
(oblique cross reformat stack). Multiple trajectories te&nstored in this way. This
planning phase is meant to be performed ahead of the intémwezxecution or peri-
procedurally in the case additional lesion access is needed

At the beginning of the intervention a 3D soft-tissue coeeth CT dataset (Philips
Allura XperCT,; Best, the Netherlands) is acquired with thar@ X-ray system, see
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Figure 10.2: (a) To establish the path to the target point a 3D view on the skull is used, in
order to find a straight path without penetrating any bone tissue. (b) Angdrmpath can be
investigated from any orientation. (c) This view permits to view the entry poititeskin. (d)

An octant through the planned trajectory is cut out, allowing to inspect tftetissue along

the path.



116 Multimodal Registration in Needle Guidance

section 2. Consequently, the preoperative CT dataset-isgistered to the peri-
operative cone-beam CT according to the Mutual Informatigterion @]. Since
the C-arm system is used to obtain the cone-beam CT data,lbasnbe 2D fluo-
roscopy data, the relation between their respective coatéisystems is inherently
known, as long as there is no patient motion. As a consequémeémage-based
registration of the CT and peri-operative cone-beam CTsg#sealso registers the CT
and C-arm coordinate systems, see se¢fioh 6.6.

After the automatic registration has been completed aridateld by the physi-
cian, the path vector is sent to the C-arm, and the geomegwing incidence is
steered to be tangent to the planned path: the entry vieweeSins view is tangent
to the needle trajectory, the path is foreshortened to despmjnt. When the needle
is positioned at the entry position and its orientation igyent to the fluoroscopy im-
age, it can be inserted (figure_10.3). The C-arm viewing iewcie is then steered to
be perpendicular to the planned path: the progression Miewhis orientation, the
needle can be navigated along the planned trajectory.

Figure 10.3: The needle orientation is adjusted under fluoroscopy guidance to ingaretidle

in the back of a phantom. The physician has to take care to prevent dirent radiation to
his/her hands.

The live fluoroscopy image is overlaid with the planned neddhjectory and
fused with an oblique slice of the soft-tissue data, perjmenal to the viewing inci-
dence and passing through the target point, using the meilesénted in chaptEl 4.
The overlay image is real-time updated for any change iniviguncidence (L-arm
angle, rotation, angulation), field of view, and sourcegmalistance [206]. The en-
try view is compensated for parallax distortion. The profet of the planned path
and soft-tissue information is aided considerably by ttee tiaat modern C-arm sys-
tems use flat X-ray detectors, which do not possess any pilmusleformation of
the image, contrary to their image intensifier predecessors

The entry view and progression view steps are repeated|fplaained puncture
paths. The views can be selected at table side. Optionaly,paths can be planned
during the intervention. After the insertion, a new cone+heCT can be acquired
and registered to verify the needle position with regarcht goft-tissue structures
and anatomical landmarks.
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10.2.2 Patients and materials

Two patients with a jugular paraganglioma tumor were sebkfir treatment accord-
ing to the described method. Embolization by needle puaciwas preferred over
surgical excision because of the surgical treatment i@lidifculties: highly vascu-
larized tumor tissue and the associated trauma. The patiese treated with percu-
taneous intratumoral injection of cyanoacrylate in ordegmbolize the lesio 5].
Each puncture was performed under high-quality X-ray rogojpmg (Philips Al-
lura Xper FD20; Best, the Netherlands). The treatment weepeed under general
anesthesia, which considerably reduces the risk of patiertion. Patient motion
introduced in the course of the procedure would lead to mgisalent of the fused
image data. Catheter angiography was used to visualizeuthertlocation and to
confirm the successful embolization of the capillary lesimtwork. Figurd 1014
shows examples of pre- and post-embolization vasculatNoeadditional imaging
techniques, such as ultrasound, were used.

(@) (b)

Figure 10.4: Endovascularly injected contrast medium shows the vascularization wfuglo
tumor (a) before, and (b) after embolization in DSA images. The tumor isatedidy the

white arrows.

For both patients two needle trajectories were plannedyusipreoperative CT
angiography scan (16-slice Siemens Somatom Sensatianset consisted of 256
and 271 slices respectively 6122 pixels, voxel size0.42 - 0.42 - 0.70 mm?, H50s
filter, arterial phase).
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10.3 Results

The registration with the peri-operative cone-beam CT mstroction took less than
8 seconds, due to the efficient calculation of the Mutual dmfation criterion by
employing the processing power of the graphics hardwarer¢[d@0.5). Maeda et
al. have shown that in phantom studies a target point can deheel with a gap
of 3.8 + 1.9 mm [207]. For the two patients it proved to be possible to gutfte
needle within 5 mm of the planned path, using the fluoroscapgd with soft-tissue
visualization (figur&1016). For the first patient (femal@ y@ars) one additional path
was planned during the intervention in order to maximallybefize the tumor, and
for the second patient (female, 64 years) three additisagdtories were planned.

Figure 10.5: The registered CT data (yellow) and the cone-beam CT data (red), sgeithn
the planned path. (a) Left oblique view. (b) Posterior oblique view.

As embolic agent the currently available Onyx 18, a nonasadiguid embolic
agent comprised of 6% EVOH copolymer dissolved in dimethijdside, was used.
To puncture, a 22-gauge spinal needle (Terumo; Tokyo, Japamemployed.

Using the described XperGuide technique allowed to stexethbolization nee-
dle with a higher confidence to the planned target locationsnjection of the em-
bolic agent and reduced the risk of puncturing the carotieinar The availability of
the real-time position of the needle over the planned neqeatle (and any deviations)
and the anatomical landmarks in the CT dataset reduces ¢ofoeintermediate an-
giography, and therefore reduces the use of iodine contradtum and X-ray dose
compared to traditional fluoroscopy guided direct punairi No post procedure
complication was established during the one year checkup.

10.4 Discussion

Ultrasound guidance is considered as the first line imagiogrtique while perform-
ing needle punctures. However, due to the presence of theiveasccipital skull
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(b)

Figure 10.6: (a) Entry point view, showing the real-time fluoroscopy image (inner veljtare
overlaid image), the soft-tissue (blue), the skull (red), and the bull'sagget point. The needle
is being positioned for entry. When the needle is foreshortened to a singlegpoire bull’s
eye it can be inserted. (b) Progression view, showing the real-timeoaopy image, the soft-
tissue and the planned path. Any vertical deviation from the path can be mezhitom-plane
deviations can be checked by switching back to the entry point view.

base bone and ultrasound interference with the bony anatitivgr imaging modali-
ties are used for guidance in the head and neck region, swathtasCT images, CT
fluoroscopy, X-ray fluoroscopy, or optionally stereotaciiwigation. All mentioned
approaches possess their limitations; CT based procedrgdinited by the patient
access area within the gantry. Additionally, the needl& plzét can be planned and
tracked is restricted to the axial planes, imaged by the Cdlatity. Static CT im-
ages further lack real time feedback. Another option is ¥X{taoroscopy, which
produces less X-ray dose and offers fewer restrictions fieipgaccess compared to
CT fluoroscopy. However, this modality does not provide afirissue information.

The fluoroscopy navigation overlaid with the planned pathpeposed in this
chapter, has been shown to be an accurate tool for needlargpgid The procedure
is performed in the angio lab, using C-arm fluoroscopy. Noitamthl navigation
equipment, special devices or special needles are reqwirech means that there is
no necessity to invest in additional specialized and unfangquipment and training,
delivering a cost-efficient procedure. The fact that thes@néed method does not use
any stereotactic frame or markers reduces the strain oretiienpand facilitates the
work flow management. The procedure can be carried out mficeefly, compared
to CT guidance.

The described technique offers the advantage over traditiangiographic X-
ray guided punctures that the needle is accurately insefted) a path, which was
planned on a three-dimensional soft-tissue dataset. émuntbre, the soft-tissue data,
as well as the planned needle path, are visualized togetitiertive real-time fluo-
roscopic image of the needle that is being inserted. Thespoesof this combined
information increases the confidence during guidance dodsfor a more accurate
deliverance of the embolic agent at the destination lonadtighe tumor.

The patient pose differed between the preoperative CT aniiiibroscopy guided
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intervention, in order to obtain optimal access to the pdahinajectory proximate to
the ear (figuré_1017), but this did not form a complicatingtéac The registration
step was not hindered by the difference in pose, and conviheglanned paths
and CT soft-tissue information into the coordinate systétih® C-arm. The needle
accessibility of an intracranial location, however, carlibeted by the topology of
the skull.
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Figure 10.7: (a) Patient pose in the CT scan. (b) Patient pose on the C-arm table; tu he
is tilted to gain better accessibility to the needle entry position near the ear. @istesed
CT data (yellow) and C-arm generated cone-beam CT data (red). &gistration can be
performed without any manual initialization or interaction.

10.5 Conclusions

We present a method for planning and guiding needle inseblyocombining X-ray
C-arm fluoroscopy and 3D soft-tissue information. The eptiynt view and the pro-
gression view together allow a complete assessment of #sept needle position
with regard to the planned trajectory. The fusion with th&-8esue dataset incor-
porates information that is missing in the fluoroscopy imaga readily accessible
manner.

Since all the involved equipment is already available inghgio suite, and there
are no additional constraints to the pre-interventionalacgjuisition, the described
method can be easily and cost-efficiently incorporatednfitee feedback from the
clinical users from various hospitals it can be concludext the described method
provides a higher degree of confidence during the procetheguse the planning,
pre-interventional soft-tissue data and the live fluorgscéracking of the needle is
accurately presented in a fused image. The procedure igdeved to be easy to use
when the hospital staff is adequately trained. First clihiexperience in applying
the proposed guidance in the percutaneous embolizatioarafjpngliomas by intra-
tumoral needle injection of an embolic agent has been abdaiThe procedure is
considered to be sufficiently accurate, successful andmigslucing the procedural
time.
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Multimodal Registration for
Coronary Artery Disease
Interventions

This chapter is partially based on the following papers:

Daniel Ruijters, Niels H. Bakker, Onno Wink, Bart M. ter H&Romeny, and Paul Suetens. CT
TrueView - Cardiac CT in the Cathlalin Proc. Annual Symposium of the IEEE/EMBS Benelux
Chapter,December 6-7, 2007, Heeze (the Netherlands), pp. 38-41

Daniel Ruijters, Niels H. Bakker, Onno Wink, Bart M. ter H&&omeny, and Paul Suetens. Inte-
grating CT in Minimally Invasive Treatment of the Coronary éyies.In Proc. European Congress
of Radiology - ECR 2008yienna (Austria), C-200, March 7-11, 200Byropean Radiologyol-
ume 18, Supplement 1, February 2008, p. 378. doi:10.10070610d8-0003-0

Joel A. Garcia, Shyam Bhakta, Joseph Kay, Kak-Chen Chanp @¥ink, Danny Ruijters, and
John D. Carroll. On-line multi-slice computed tomography riattive overlay with conventional
X-ray: A new and advanced imaging fusion concépternational Journal of Cardiologyyolume
133, Issue 3, April 17, 2009, pp. €101-e105.

doi:10.1016/j.ijcard.2007.11.049

Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetensséleess-based 2D-3D registra-
tion of the coronary arteriesnternational Journal of Computer Assisted Radiology andySry,
Volume 4, Number 4, June 2009, pp. 391-397. doi:10.1007/3-:068-0316-z

Onno Wink, Harvey S. Hecht, and Daniel Ruijters. Coronaryn@ated Tomographic Angiogra-
phy in the Cardiac Catheterization Laboratory: Current liggpions and Future Developments.
Cardiology Clinics, Advances in Coronary Angiograpkgited by S. J. Chen and J. D. Carroll,
Volume 27, Issue 3, August 2009, pp. 513-529.

doi:10.1016/j.ccl.2009.04.002

11.1 Introduction

Coronary Artery Disease (CAD) is a condition in which pladuglds up inside the
coronary arteries, which supply the myocardium (heart mejisgith oxygen-rich
blood. Plaque consists of fat, cholesterol, calcium, ahémsubstances found in the
blood. When plaque builds up in the arteries, the conditiaralked atherosclerosis.
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Figure 11.1: Stent delivery to a stenotic artery by percutaneous catheterizatioh [208].

The obstructed blood supply to the myocardium can lead iguat shortness of
breath and chest pain (known as angina). It also increasdg#iihood that blood
cloths will form in the arteries. A blood cloth or the acuteture of plaque can
partially or completely block the blood flow. A sudden contplebstruction may
lead to an acute myocardial infarction (heart attack). Givee, CAD can weaken the
heart muscle and lead to heart failure and arrhyth [208]le the symptoms and
signs of coronary artery disease are noted in the advanaezicftthe disease, most
individuals with coronary artery disease show no eviderfatisease for decades as
the disease progresses. CAD is the leading cause of dealthwide. The treatment
options are: medication, coronary artery bypass surgepgi@utaneous intervention
(figure[11.1).

A Chronic Total Occlusion (CTO) is defined as an artery thattheen completely
occluded for more than 30 days. Medical theragy( cholesterol lowering medica-
tions, beta-blockers, nitroglycerin, calcium antagaistc) is partially efficacious,
but rarely completely eliminates either the symptoms oiwothjective evidence of the
ischemia. Surgical treatment involving Coronary ArterypBgs Grafting (CABG) is
effective as long as the distal target vessel is anatorgisaitable for insertion of a
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bypass graft. The limitations of the bypass surgery are kvedivn and include risk
of surgical mortality, and significant expense.

Another treatment option is Percutaneous Coronary Iniiwe (PCI). This min-
imally invasive, less costly procedure is accomplishedsiggiconventional guidewire
techniques to slowly ‘poke’ through the occlusion. The tispent to recanalize a
chronic total occlusion is estimated to be between 5 minatesseveral hours with
an average time of about 30 minutes. Percutaneous intesmeftCTOs accounts for
10% to 15% of all angioplasties; however, after successftamalization, there is an
increased rate of subsequent restenosis and reocclusigmaced with nonocclusive
stenoses. Although several randomized trials demondttheeefficacy of stent im-
plantation over balloon-only angioplasty, even with stehere remains a significant
rate of both restenosis (32% to 55%) and reocclusion (8% %)1Zhronically oc-
cluded coronary arteries account for approximately 20-8d#%e documented coro-
nary disease encountered in coronary catheterizatiortdaloy @@2].

The lack of anterograde blood flow in the totally occludedseésegment, how-
ever, prevents the angiographic visualization using ¢athiejected iodine contrast
medium during angioplasty. In case there is no or littleifiakt plaque present, there
are no landmarks that indicate the location of the occludsdge during fluoroscopic
navigation and treatment of the diseased vessel segmemabidence of anterograde
flow has been reported as one of the factors that can lead ¢eguaal failure ].

Due to the fact that contrast medium is injected intravelyp@mputed Tomog-
raphy (CT) visualizes both anterograde and retrogradel filessel segments. Fur-
thermore, because of its high contrast resolution, CT cem\dbualize soft plagques
sections. As a result it is possible to identify also the odel vessel segments in
the CT reconstruction. In this chapter we describe theadinéxperience with in-
tegrating pre-interventional coronary CT angiography ped-interventional X-ray
fluoroscopy in the interventional treatment of CAD. The CTRl&X-ray images are
presented in a fused visualization, using the techniqu€hapte[ 4, in order to guide
the navigation and deployment of intravascular devicesidin the diseased coronary
arteries, especially for CTO cases.

11.2 Methods and materials

11.2.1 Pre-interventional acquisition and analysis

Recent years have seen considerable advancements indilediehaging of the car-
diac anatomy using CT reconstructions. The newer 256-ia#iance iCT, Philips
Healthcare) and 320-slice (Aquilion One, Toshiba Medigadt&ms) CT scanners are
able to cover the whole heart volume in one or two rotatiortsclvleads to consid-
erable gains in temporal and spatial resolution and redong®on artifacts. These
developments especially enable high-quality coronangingwith a significant re-
duction in radiation dosé;L_le4]. Prospectively gated aixeging for coronary CT
angiography (or “step and shoot”), with radiation appliedyoduring the middias-
tolic coronary rest phase, has demonstrated radiation sgags of greater than
75% compared with the traditional technique of helical agprective gating while
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Table 11.1: Correlation of 64-slice computed tomography and invasive angiogrémhthe
detection of greater than 50% coronary obstruction.

Study n  Sensitivity Specificity Negative
Predictive Value

Leschkeet al. [221] 67 94% 97% 99%
Leberet al. [222] 59 73% 97% 99%
Mollet et al. [223] 52 99% 95% 99%
Raff et al. [224] 70 86% 95% 98%
Roperset al. [225] 82 95% 93% 99%
Fineet al. [226] 66 95% 96% 95%
Weighted average 90% 95% 98%

maintaining image quality [215-2117] and with a diagnosticuaacy greater than
96% ]. Currently, coronary CT angiography is mesiowned for its nega-
tive predictive valuei.e., for its ability to rule out the presence of (severe) corgnar
stenosis, see tadle T1L[1 [220].

The fused visualization requires that the CT and X-ray imdafe are registered
with the objective to find the spatial mapping between botaskts. In order to per-
form the automatic registration of the CT data and X-ray thsoppy images (see
ChaptefB) and the intra-interventional visualizatio®, toronary arteries need to be
segmented from the CT data. There is a vast amount of literatuthis subject, see
e.g, ﬂﬂ-lﬂb]. The extraction of the coronary arteries from ¢ardiac CT data is
generally started after the whole heart segmentation hexs performed because it
can provide clues to the location of the coronary arteridse first step consists of
extracting the tubular structures in the raw CT data. Tdifat# this extraction pro-
cess a separate representation is often generated in wWidaressel-like structures
are highlighted. An example of such a “vesselness’ [14]rélleimage is shown in
figure[I1.2 The coronary artery tree is then traced in theekesthanced data start-
ing at the ostia, which could have been located during theeglieag whole heart
segmentation. The segmentation algorithm tries to follbes énhanced structures
until it reaches the distal end of the vessel or the sighatoatrast-to-noise reaches
a threshold. Most commercially available applicationsaapable of extracting the
major coronary arteries, but let the operator provide the@iate labels. It is al-
ways possible to edit and extend the automatically foundeckmes or to trace the
entire vessels manually.

The segmentation of the coronary arteries in the CT datevaliodetailed analysis
of the vessel lumen, stenosis and associated plaque tisigely calcified regions
can be marked to show the extent of the lesion. The lesionat@man be quantified,
however the derived percent diameter stenosis is usualtyded to the encompassing
quartile €.g, 50%-75%) to cope with the limitations of the spatial regoli. The
often tortuous nature of the vessels does not allow them ¢tapiired in their entirety
in a single cut through the volume, even with a large slah Sihés can be overcome
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(b)

Figure 11.2: Example of a vessel-enhanced image. (a) A volume rendering of itjiaabr
CT dataset. (b) The same dataset after a vesselness filter was appliednajor coronary
arteries are visible in the center of the volume.

by using a curved Multi-Planar Reformat (MPR) to enable tlseialization of the
entire course of the vessel, along with providing true distameasurements that are
not subject to foreshortening. The curved MPR is based andfitt curved plane
through the centerline of a selected segmented artery.

11.2.2 Peri-interventional use

Because the ability for in-room manipulation of the CT datd ¢&heir derived infor-
mation by the interventionalist during the diagnostic a portion is limited, it is
important to show the essentials of the CT information dyithre critical portions of
the procedure. Figuie 11.3 shows the segmented CT datasaseing displayed in
the cathlab. It is essential that the physician has the Ipitissto operate the system
directly from the patient table side. The operator has thgodpnity to select the
coronary artery of interest and define the vessel segmemiterfeist from the table
side. In the lower left panel the C-arm configuration is shokat corresponds with
the current viewing angle of the CT dataset. The orientadiothe rendered views
can be coupled to follow the C-arm geometry viewing incideimcreal-time.

Spatial foreshortening is the distortion of geometricali&ures €.g, vessels)
when depicted at an angle (figure 11.11). Foreshorteningeofiéssel geometry in
X-ray images makes it difficult to asses their true lengthd trerefore it is prefer-
able to select X-ray projection views that have minimal $h@tening for the ves-
sel segments of interest. In order to assist the physiciaelecting C-arm views
with least foreshortening and vessel overlap, an optimedap is generated (fig-
ure[11.4)[227]. The vertical axis of this map representsathgulation of the C-arm
system, and the horizontal axis the rotation. The color dfiatpn the optimal view
map represents the amount of foreshortening of the selectehary segment, and
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Figure 11.3: In-room presentation of the segmented CT data. In the middle the aortl, trun
the coronary arteries (red) and in this case the left ventricle are showe. cirved MPRs at
the right correspond to the selected vessel segment.

its likelihood to overlap with other vessel branches. Basethis optimal view map
a series of C-arm angles may be chosen to be used during #rgention. These
angles may be different than the routine views commonly usethe cardiologist.
The C-arm can be steered to the selected angles, using ti@ptes described in
sectior[ 6.6 and appendiX A.

After a registration between the segmented CT data and atsélX-ray im-
age has been performed, as discussed in chapter 8, the liag flioroscopy image
stream can be displayed fused to the CT data in real-tims, st®own in figur&1115.
Ultimately, the cardiac phase of the CT image would be mattbé¢he cardiac phase
of the radiographic data. Currently the CT images are shovanpreselected static
cardiac phase; the coronary arteries in the X-ray imagdadisp periodic motion
around the coronary arteries, segmented from the CT data.

11.3 Results

A typical example of CTO revascularization using imagedusis demonstrated in
figure[I1.6. The catheter coronary angiography reveals é¢issel cutoff, whereas
the superimposed CT images from a similar viewing angle aestnate the occluded
segment and the remainder of the left circumflex artery, vfgdilled by collaterals.
Successful restoration of flow was accomplished by the wniegtechniqud_L_ZiO],
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Figure 11.4: The optimal view map is based on the vessel segment indicated by the vehite lin
The white arrow points to the spot on the optimal view map that correspontie current
viewing angle. (a) This suboptimal viewing angle leads to a consideralbdeanof foreshort-
ening and a lot of overlapping vessels. (b) This viewing angle delivess feseshortening,
while the vessel segment of interest does not overlap with other anch
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Figure 11.5: A fused visualization of the coronary arteries, segment in a 3D CT dafesht
and 2D X-ray angiography image (grey). The combined visualizationvalline correlation
of the vessels in the CT data (and pre-interventional annotations) andetfiénperventional

X-ray by the observer.
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Figure 11.6: (a) Fusion of CT (red) and X-ray images (grey) for navigation in a CEGsel.

The catheter injected contrast medium (white) does not enter the left diesufinCX), whereas
the path is still visible from the CT data. (b) The corresponding curved MR&ying the CTO
and the retrograde filled continuation of the vessel.

which means that the catheter was progressed in the dineattiie bloodstream.

11.3.1 Case report

A 40-year-old male with a complex cardiovascular historggented with atypical
anginal symptoms. Four years back he presented with a dvageas which required
drainage. He subsequently developed aortic valve enditisaadd underwent aortic
valve replacement, ascending aorta replacement, and legitapion of his coronary
arteries. He reportedly had an intraoperative left antetescending artery (LAD)
injury which required the placement of a saphenous veirt (83fG) to the LAD. No
preoperative coronary angiography was performed. Soendifcharge he presented
to another hospital with an acute coronary syndrome andiyp@sardiac biomarkers.
A 90-percent lesion of his proximal right coronary arteryC® was stented. A
week later, the patient presented with chest pain and pesitirdiac biomarkers. A
repeat intervention of the RCA was performed and due to aldéstge dissection
at the previously placed stent another stent was implamdduserlapped with the
previous stent. Given his complicated cardiovasculamhysand presentation the
decision was made to perform a coronary CTA. The CTA sugdesie’5% in-stent
restenosis of the mid-RCA stents and prompted invasiveneoyaangiography, which
revealed that the RCA had only mild irregularities with wideatent stents. The
LAD and the left circumflex artery had only mild luminal chasy The graft to the
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Figure 11.7: Computed tomography showing the saphenous vein graft (SVG) locatan in
unusual superior and anterior position due to a surgical repair of theaolnside the white
box note the origin of the SVG in relation to the aorta and the proximity to the inraiein
artery. The centerline prediction of the position of the coronary arteriethéleft anterior
oblique position is shown. LAD = left anterior descending artery; RCA = rigbronary
artery; M1 = first obtuse marginal; M2 = second obtuse marginal.

LAD was not visualized as in prior procedures despite aoafolgy in two planes.
Competitive flow along the mid-LAD suggested a patent SVGe ©kerlay of the
CT image (figurd_1117) on X-ray (figurés 1.8 dnd 11.9) sudubgsallowed for
the cannulation of the vein graft to the LAD, which, due to thistorted anatomy
of the aorta, was in an unusually high and anterior locatfayue [I.ID) [228].
The fusion of the CT data with the live fluoroscopy image strgaovides more
confidence and a higher accuracy during the navigation apldylaent of the intra-
vascular devices. Especially for complex pathologies anadcanical deformation the
roadmap provided by the fused CT morphology is highly valelab

11.4 Discussion

The views with least foreshortening and overlap with othessel branches with re-
spect to a chosen vessel segment can be planned before iog theiintervention,
using the information in the optimal view map (see figure JL1RBeing able to se-
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Figure 11.8: Magnified image of the ostium of the vein graft (arrow) by CT (left) and thayX-
angiography acquired from the same viewing angle (right).

Figure 11.9: Rendering of the ostium (arrow) of the SVG and the X-ray angiogram &rom
different angle in the CT (left) and the corresponding X-ray viewing angjaty.
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Figure 11.10: Computed tomography background with a live X-ray overlay showing The C
derived position of the SVG and the subsequent successful cannulaticinjaction under
fluoroscopy.

lect the most appropriate view immediately helps to savérashagent and radiation
dose, and also provides more optimal views for best positipand deployment of
the intravascular devices, such as stents. Suboptimabyleading to foreshortening
(figure[I1.I1), may partially account for the suboptimalsitirity and specificity of
coronary angiograph@lw]

Coupling the in-room presentation of the segmented coyo@rdata and associ-
ated curved MPR representations with the viewing incidexicbe C-arm geometry
in real-time provides information of the current viewinggémwithout administration
of additional contrast medium and X-ray dose.

Image fusion of CT and live X-ray fluoroscopy has severaliciihapplications,
such as radiotherapy planning and verification, surgergrptey and guidance, and
minimally invasive vascular treatment in peripheral androgascular interventions.
The application of image fusion to coronary interventiosi€hallenged by cardiac
and respiratory motion, and only recently efforts in thisndn have been reported
[@,Eﬁ@dﬁoy Although the live X-ray images of thear@ry arteries display
a periodic movement around the static CT image, it is stiistdered valuable for
navigation purposes. Especially for CTO cases, where thgebelistal to the occlu-
sion is completely hidden in the X-ray image, the fused imageides a useful road
map.
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Figure 11.11: Perpendicular orientation of the X-ray beam to a vessel segment onl@sio
interest results in minimal distortion of the projection image (left). Vessesfangening results

in suboptimal projection images that misrepresent the true length of a lesieessel segment
(right). Adapted from[[229]

11.5 Conclusions

It is to be expected that with the improvements being ackliéwecoronary CT an-
giography with respect to increasing temporal and spatsdlution at a decreasing
radiation dose, CT will gain a more prominent role duringgdiasis of Coronary
Artery Disease (CAD), especially for the more complex cagdsng with improve-
ments in the CT imaging techniques, the tools for automatalyasis become ever
more sophisticated. When this detailed information is abéd at the diagnostic
stage, the desire to integrate it in the treatment cours®gieal step. In this chapter
first clinical experiences with image fusion during the tneent of CAD have been
reported. We have embedded the registration algorithnseptted in chaptéd 8 in an
integrated clinical application that allows to fuse theslX-ray fluoroscopy images
and the diagnostic CT data in a single fused image. The sysierbe operated from
the patient table side in an intuitive manner. First clihfezdback has been posi-
tive, since the CT data helps the physician during guidamckedeployment of the
intravascular devices.



Chapter 12

Conclusions

It was the objective of this thesis to combine multiple imaig¢asets into a coher-
ent fused visualization to guide minimally invasive treatry assuring usable and
cognitively adequate interaction and interpretation tgydlinician. In this work this
goal has been filled in by focussing on practical technichltems, without loss of
general applicability. In this context a number of fundatakroncepts have been
developed that enable the integration of multimodal datianizge guided interven-
tions and therapy (IGIT). Fast volumetric visualizatiom aegistration of multimodal
data has been explored in order to achieve the realtimerateyfused image guid-
ance during interventional treatment. The developed nusthave been validated in
a number of concrete clinical applications, which servedmdnstrate the general
applicability of the presented concepts.

The methods that have been presented in this thesis canidediiato two main
categories: visualization techniques and registratiohrtgjues. For the fast visual-
ization of volumetric datasets a double space-skippingahity has been developed.
This double hierarchy has been based on the analysis of theh@Rlware pipeline.
Each hierarchal level addressed a bottleneck in this pipelnd can be tailored to
optimally leverage its data throughput. Due to this appnp#te maximal rendering
performance can be reached without sacrificing any imagétyju&specially for
visualization during image-guided interventions it is loé tgreatest importance that
image rendering, which is fused with real-time acquiredichl data, is instantaneous
and allows for fluid and interactive manipulation.

Several practical approaches for fusing volumetric anéyprojection data have
been presented here. Overlaying the silhouette of the 3&sdt allows to indicate
the shape of obscured parts of a dataset, while maintaimnmage that is easy to
interpret at the same time. The use of the stencil buffenalko process the real-time
projection image differently, depending on the underly&ig data. These methods
enable the presentation of easy-to-read images duringitéevéntion without occu-
pying any significant additional processing resources.

Autostereoscopic displays provide depth perception withemy external aids,
such as goggles. Their added value in the intervention rammerns the intuitive in-
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terpretation of 3D data. As a consequence of this improvegi@Sentation there is a
reduced need for interactive manipulation with such dakéckvprovides the clinician
with more time for other tasks. The rendering of images fahsautostereoscopic
screens demands a lot of computation resources, since thes3i2 has to be depicted
for each of the views that are emitted by the autostereosaigplay. In this work it
has been shown how the GPU can applied to efficiently rendsucb displays and
how the frame rates and the resolution can be balanced whgmdhessing resources
are scarce.

Concerning the subject of registration, the applicatiothef GPU has been in-
vestigated to accelerate the process of elastic imagenaips. Elastic registration
typically requires considerable computation times, and fts acceleration would aid
the utilization during clinical procedures. The improvertgein computation times
amounted up to a factor 50, using the proposed method. Wetigaged the preci-
sion and performance aspects of the GPU in the efficient atiatuof uniform cubic
B-splines, which are employed in the registration procEsgecially for clinical ap-
plications it is essential to know the (im)precision of tised algorithms and to assess
its impact on the clinical results.

A novel similarity measure has been developed for the perpdsegistering
coronary arteries, which were imaged using CT and the X-rayr@. The similar-
ity measure does not require a segmentation of the livevietgional X-ray image. It
uses the vesselness filter to enhance the vessel structiinesx-ray imagd_L_1|4]. The
similarity is then obtained by calculating the dot produfcthe distance transform of
the projected CT vessel centerlines with the response ofdhselness filter. Our
validation tests proved that it performes robustly and eately for the given task.

The clinical applications that were developed and investid in the context of
this thesis concerned minimally invasive treatment usieggX-ray C-arm. All ap-
plications used the fast volume rendering and data fusiahwlere introduced in
chapter§ B anfll4. The first clinical application that has hEstribed dealt with
the guidance and roadmapping of the catheter in the treathanteriovenous mal-
formations (AVM). For this purpose a pre-interventional MRtaset, clearly depict-
ing the AVM, was registered with a peri-interventional 3@xReconstruction using
a GPU-accelerated mutual information criterion. The taak fluoroscopy image
stream was then overlaid on the fused 3D data, using the maxtfaised registration
described in sectidn 8.6. The roadmap information provigethe 3D-RA vascula-
ture allows to reduce the amount of harmful contrast ageshpaovides more insight
in the 3D topology of the vessel tree. The fused MR deliveditamhal information
regarding the AVM location, affected tissue and feedingets

A further clinical application that has been researchedesied the percutaneous
embolization of skull base paragangliomas (glomus tumtim®ugh direct needle
punctures. The needle path was planned on a pre-intermah@r dataset, which
was registered with a peri-interventional cone-beam Constuction of the patient’s
head. This registration also brought the treatment planinito the frame of reference
of the C-arm system. The fused 3D data, together with thengldumeedle trajectory,
could then be visualized together with the live fluoroscomages. The insertion
point and needle orientation were determined and guidetidydal-time C-arm im-
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ages, fused with the planned data. Also the progressioneofigkedle insertion was
monitored from a viewing angle that was determined by thargd path. It proved
to be possible to execute the clinical procedure in an atearad safe fashion, using
the described techniques.

The final clinical application that has been described coreztthe use of CT
data for roadmapping purposes during the treatment of ahtotal occlusion (CTO)
of the coronary arteries. For this procedure the coronagrias were segmented in
a pre-interventional CT dataset. The segmented arter@s were registered with
peri-interventional X-ray angiography images, using tesselness-based method,
defined in chaptdr]8. During the advancement and deploynfeheadntra-vascular
devices the live X-ray image stream is overlaid on the stagmented CT data. This
procedure proved to aid the navigation for the vessel segdistal to the occlusion,
and increased the confidence during the guidance of thevaseular devices.

A large amount of coordinate spaces with dynamically chagpgpatial relations
is inherent to the integration of multiple image datasetsndua clinical interven-
tion. We have introduced a coordinate space framework ritbestin appendik’A,
that allows to administrate any number of such coordinageepin a transparent and
maintainable manner. The utilization of such a frameworsesahe conception of
new applications for minimally invasive procedures, ardliees the risk of program-
ming errors. As such, it contributes to the target of devielppechniques that are
generally applicable to image guided interventions. Tlaengwork has proven its
added value in several large software projects at Philipdthieare.

All algorithms were implemented in C++ code and embeddediitical proto-
types that could be operated by the clinical staff. The pypi® software packages
have been clinically investigated at the following hodgitéahe Karolinska Institutet
in Stockholm, Sweden, the Fondation Rotchild Hospital ind2d&rance, the Cen-
tre Cardiologique de Nord in Saint-Denis, France, the tuts€ardiovasculaire Paris
Sud in Massy, France, the Lenox Hill Hospital in New York, USKAe University
of Colorado Hospital in Denver, USA, the Royal HallamshiresHital in Sheffield,
UK, and the National Taiwan University Hospital in FooyimiWwan. During several
medical conferences live interventional treatments haenlbroadcast from various
hospitals, using these prototypes; The coronary arteigriusoftware has been used
during live cases at the European Congress of Percutanesrdso@scular Radiol-
ogy (EuroPCR) of 2006 and 2007 by the Institut CardiovasmiRaris Sud in Massy,
France, and during the Transcatheter Cardiovascular peetias (TCT) conference
in 2006 by the University of Colorado Hospital, Denver, USAe needle guidance
and multi-modality 3D roadmapping applications have besedwduring live cases
at the Live Interventional Neuroradiology & Neurosurgemugse (LINNC) of 2007
and 2009 by the Fondation Rotchild Hospital in Paris, Frarnidee described tech-
nologies have been integrated into commercially availablations (Philips Allura
3D-RA, sold over 500 products, and Philips Allura XperGugjdehich have been
installed in hospitals all over the world.
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12.1 Outlook and future work

The advancement of image guided interventions and thet&py)has just begun. In
the future there will be a higher volume of procedures, morefgex procedures, and
more image integration. The ever increasing computing pavileenable more com-
plex algorithms to compute within time frames that are atadap for interventional
use. Computing devices will have more parallel capacitias today’s hardware. In
this sense, the trend of designing algorithmic solutiors tan harness this parallel
power, as has been done in this thesis by using the GPU, wilirace. It is to be ex-
pected that the solutions that have been described in théssthre just the beginning
of whole families of new and advanced image processing ndsttiwat can be used
in interventional treatment.

For volume visualization the primary future developmenitfimost added value
for interventional image guidance lie in the area of simétusly interactive ray-
casting of multiple volume datasets. In this thesis it hasaaly been shown how
fast volume rendering can be combined with surface renderirother datasets, see
Chaptef}t. The state of the art already describes direcm@hendering of multiple
datasets, but at the cost of a significant performance peaatt typically sacrific-
ing the visualization of topological relationships as praed in this thesis. Future
algorithms and hardware may address these issues. In theofiédst registration
algorithms there are many directions that can be exploredu& model and feature-
based registration, registering more than two datasetsltsineously, and the ex-
ploitation of massive parallelism are just a few examplesie @pplication of the
presented methods to a large patient population in the xoaoite clinical trial would
allow to quantify the merits in terms of efficacy, radiatiarse reduction, iodine con-
trast medium used, and clinical outcome.

Furthermore there are still many clinical interventiomabtments that can benefit
from the presented techniques. Multimodal image guidaacefplications such as
endovascular aneurysm repair (EVAR) when treating an albtraortic aneurysm
(AAA) or the embolization or ablation of liver tumors, elisimage registration of
functional image data during neuro-surgery, and the nedieh of planning data for
guidance during the treatment of structural heart disesserdy some of the image
guided therapies that could benefit from advanced pernviatgional registration and
interactive fused visualization. The results from theichihapplications described in
this thesis are very encouraging and the path that has bBewdd can be expanded
to improve the clinical outcome for many other intervenéibimeatments.
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Appendix A

A Coordinate Space
Framework

This chapter is based on the following paper:

e Daniel Ruijters, Jeroen Terwisscha van Scheltinga, BarteMHaar Romeny, and Paul Suetens.
Design Pattern for Multi-Modality Coordinate Spac&6th Philips Software Conferendgpvem-
ber 2006, Veldhoven (the Netherlands), 8 pages

A.1 Introduction

There are numerous applications with a large number of ge@rakcoordinate spaces
(also known as coordinate systems or frame-of-refererm@h as interactive 3D
graphics and modelling applications, algorithms handtiognplex dynamic mechan-
ical structures, coordinate transformations for astrasahor geodetic purposes (such
as GPS), and many others. The relationships between tleeatiffcoordinate spaces
can be static or dynamic, bijective or many-to-one, comtirslor contain discontinu-
ities, and be affine or non-affine.

In the biomedical arena multiple coordinate spaces arelgniered when dealing
with multi-modal image registration and fusion, but alsoewltonsidering the me-
chanical parts of an imaging system, or when establishieggdometrical relation
between an imagee(g, coming from an ultrasound probe) and the patient. Espe-
cially the dynamic integration of multiple image datasetsf different sources at
run time leads to an explosion of different coordinate spa&®metimes coordinate
spaces that are very simila.§, integer voxel coordinates at the center or at the cor-
ner of the voxel extent) lead to erroneous assumptions byrgnamers that are often
undiscovered and persistent system inaccuracies are tiseguence.

When the amount of coordinate spaces is large, the code deeilim coordinate
transformations may become complex and prone to errorsv@icome these prob-
lems, we developed a software framework, to transparemitlyrabustly deal with
multiple coordinate spaces. This framework especiallysaitrseverely reducing the
chance of making false assumptions, and reducing the caitypté the code.
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The framework can be applied for the transformation of datavben related
spaces of ordered-tuples, such as vector spaces. It might be of interest totpoi
out that these spaces are not necessarily Euclidian. Famites, a voxel space (a
vector space representing voxel indices), whereby thels@a@ not cubic (which
is very common ire.g, CT and MR volumes) isiot Euclidian. Strictly speaking,
the framework can also be applied to spaces of orderatples that are not vector
spacesi.e., spaces whose elements cannot be linearly combined, sunharafolds.
The only criterion is that a mapping exists between the space

A.2 Related work

An intuitive hierarchical data structure for managing teltions between different
coordinate systems is the scene graph. A scene graph iseztomtl of nodes in a
tree structure. The nodes in a scene graph represent amatrdpace. Often a node
is associated with a spatial object, such as a voxel datagei@sh in a biomedical
application, ote.g, an engine, a door or a steering wheel in an automotive mugleli
application. The edges or links between the nodes contain gpatial relationship.
A node may have many children but only a single parent. Théadpeansformation
between any two nodes in the scene graph can be establishezhbgtenating all
spatial transformations on the path between them. A propéithe tree hierarchy is
the fact that a change of the spatial transformation of a nodts parent, automati-
cally affects the children of that node in the same way. Raredes, therefore, act as
compound objects to their children, which can then be mavadsformed, selected,
etc as easily as a single object.

Scene graphs are used in numerous graphics applicatiofigsidpmodelling and
programming languages, such as VR 31], Open Invev@I,ZOpenGL Per-
former ], Java 3D [234], Open SG_[235], Open Scene Gradb][ nvidia
NVSG [237] and many others. Where VRML is only able to descth scene
graph, the others also provide some means to transformspioorh one coordinate
system to another. The transformations are, howeverystiyf much driven by the
user of these tools.e,, it is his responsibility to keep track of which data are ineth
coordinate space, and whether and how they should be tramesdo

Zuiderveld and ViergevelL_[_’VO] describe an Object-Orierapgroach aimed at
integrated visualization of multiple volumetric datasethich also deals with coor-
dinate systems. However, they chose to leave the coordirsatsformations to the
responsibility of the user of their framework. Nadehu [72dg®nts volume scene
graphs, a structure for composing scenes containing vdfictata sets, where the
scene graph is used to transform coordinates from world &g@space. Other trans-
formations, though, are not directly provided by his frarogkw

In geospatial application@ﬁiﬂ%] it often is desirablexpress points in dif-
ferent geometry systems, such as geocentric, heliocemtiocal coordinate systems.
For reasons of efficiency or simplicity it can be desirablexpress coordinates in flat
earth or spherical earth coordinate systems, and for aggetbpsoid or geoid coor-
dinate space may be required. The software paradigm in tiaigter can be used to
easily query data in the desired coordinate system.
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There is a significant difference between a point and an extiea distance be-
tween two points), as Weise@40] points out. This differe is particularly of
importance when transforming data from one coordinateegy$t another one. For
example, translations do not affect the values of an extentthey do affect the co-
ordinates of a point (a ruler of 30 cm retains its size of 30 dmemvwe move it from
Eindhoven to Leuven).

The here presented framework can be regarded as a softwsign gattern for
dealing with a large number of coordinate spaces. A genemview of design
patterns is offered by Gamma et al. (“the gang of four”) [241]

A.3 Design basics

We define “geometry classes” as a set of object classes,liegdnasic geometrical
entities, such as points, vectors, lines, angles, plagtes,To identify them easily,

we use the prefiXxgeo” . Instances of these classes are generalized under the term
“geometry objects”. It is our objective to easily query thamany given coordinate
space. A further important class in our framework is 8ieobject A 3D objectis

a node in the scene graph and contains a number of geomeggt®bp describe its
spatial properties. Any spatial entity that can be drawrukhbe derived from the

3D objectclass. But there can be also abstiabtobjectsthat do not draw anything,

but merely represent an abstract frame of reference.

One of the first observations we make, is the fact thatZDybject which can
be found in a scene graph, implicitly defines its own coordirspace. Consider a
traditional3D object(e.g, a table), which is located in a parent spaeg{(a room).
The object has a translation, which corresponds to the auatedof the origin of the
object expressed in its parent space. Further it can havatzom which corresponds
to a rotation of its axes with regard to the axes of the paneate, and a scaling. In
fact we have just described a rigid transformation betwe@ncoordinate spaces.

In our software paradigm, an abstract coordinate space instance of a3D
object and therefore every instance of a class, inherited fronBihebjectclass,
always defines its own coordinate space.

Further, we establish that the coordinates of a point areyah\defined in a coordi-
nate space. This may be a trivial observation. In an appicatith many coordinate
spaces, though, treating a datum in the wrong coordinateesigeone of the most
common causes for bugs, and may be difficult to track whendioate spaces are
similar or related. The same considerations are of couusefar instances of other
geometry classes,g, normals, lines, planestc. Therefore we provide all geometry
classes, with a reference to the coordinate space they ter@atly defined in (see
figure[Ada). In this way it is virtually impossible to ‘asseha wrong coordinate
space.

The internal coordinate space of an instance of such a dadsfined at con-
struction of the instance, and stays fixed during the lifetwhthe instance. This is
particularly of importance when the relations between therdinate spaces are dy-
namic. Imagine, for instance, a camera, which moves witpeesto the depicted
scene; the relation between the camera coordinate spaceand coordinate space
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1 3DObject -m_parent
1 geoPoint
-m_coordinate -m_transformation
-m_spac +Get(in space : 3DObjeqt)
3DObject Transformation
* 1
(a) (b)

Figure A.1: (a) the geoPoint class has internal coordinate values, and a referenits in-
ternal coordinate space, (b) every 3DObject contains a reference fmarent, and a spatial
transformation with regard to its parent.

is then dynamic. It matters whether the coordinates of atoidefined in camera
space é.g, relative to the view port corners), or in scene coordinéas, relative to
the position of an object in the scene).

A.4 Transforming space

The Transformatiorclass describes the spatial mapping between an instance»f a
objectand its parent in the scene graph (see fiuré A.1b). This ibsatnaet class,
and specific transformation classes, such as affine tranafams, are inherited from
this class.

The Transformationclass possesses virtual functions to transform coordinate
from its owner space to the parent of its owner, and vise Wgnésapproach is sim-
ilar to the Visitor design pattern [241]). These functioturn a boolean to indicate
whether the requested transformation could be perfornrethi¢ way also many-to-
one relations could be implemented; the function corredpgnto the one-to-many
direction would then always return false. Further, transftions that are only valid
for a certain sub-space can use this mechanism, since theld weturn false for
points outside the sub-space. Similar virtual functioresavailable for transforming
all other geometry objects, like vectors, matrices, plaqeaéonsetc

A rigid transformation can be described by translation astdtion only. In the
case of an affine transformation (of which the rigid transfation is a sub class) the
virtual transformation functions can be implemented by tiplying homogeneous
coordinategx, y, z, w), representing points or vectors, with the 4*4 transfororati
matrix (or inverted matrix, for the inverse transformajioA typical implementation
for elastic (non-affine) transformations could use splimgrpolation, driven by a
volumetric mesh.

Since no assumptions are being made about the type of travetion, the various
relations in a scene graph might be of a different kiedy{ affine and non-affine
transformations could be found in the same scene graphpiotder instance under-
water scenes).
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A.5 Querying geometry objects

One of the most essential functions that any geometry classrhour framework,
is the Get function (see figure_Alla). Th&et function allows to query a geometry
object with respect to a given coordinate space. Gee¢function ofe.g, the geo-
Point class takes a reference to a coordinate space as input garaama returns the
coordinate values of the point with respect to the passertowaie space.

(e
/'\
D
Y/, N

Figure A.2: Traversing the scene graph.

If the passed reference to a coordinate space equals theahspace of a geom-
etry object, its internal values are simply returned. Ifytlaee not equal, the inter-
nal values are transformed from the internal coordinatesspathe destination one,
passed as input parameter. In order to do this, the scenk igrapversed, delivering
the path from the internal coordinate space to the destimathe. The transforma-
tions between the intermediate coordinate spaces in tiegpatthen applied to the
geometry object. If a transformation returns false (thus iitot possible to transform
the geometry object over that node), or if no path exists betwthe internal and
destination space.€., they are not in the same scene graph), an exception is thrown

Four rigid transformations of a coordinate, as is shown inréfA.2, take 2.7:s
on a Pentium IV 3.0 GHz machine.

A.6 Traversing the scene graph

When the coordinate space that is passed ta@bgefunction of a geometry object
differs from the internal one, the scene graph has to bersade In order to perform
this efficiently two arrays with references to the nodes & shene graph are built.
The ascending array starts with the internal coordinateesphthe geometry object.
Iteratively the parent of the last node in the array is addedil the top node is
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reached. The descending array starts with the destinatiordinate space, and also
here parents are added until the top node is reached. Nowlieisked whether the
last node (the top node) in both arrays is the same. If thimighe case, meaning
that the internal and destination coordinate spaces aiia ttteed same scene graph, an
exception is thrown.

Figure A.3: Building the path that represents the traversal of the scene graph.

After the check, the nodes at the end of both arrays are reinibtieey are the
same. This is repeated until the ends are different, seesfii. The remaining
nodes now form the path that has to be traversed. The data getbmetry object is
consequently transformed by the nodes in the ascending ateating with the first
node in the array. Then the data is transformed by the nodbs idescending array,
calling the inverse transformation functions. This arrayarsed starting from the
end, see figure_Al3. Note that the order of this algorithm iy determined by the
height of the scene graph, not by its width.

A.7 Operator overloading

Another important feature is the fact that we overloadedtherators of thgeoPoint
andgeoVectorclasses. Note that two points cannot be added togethergmimand
a vector can be added, delivering a new pdint [240]. By owetilog the operators,
we can even add points and vectors, which are internallyessgd in a different
coordinate system.

For instance let us consider the position of an object in tems, expressed by
an instance of thgeoPointclass, with the world coordinate system as internal space
(expressed ie.g, millimeters), and @eoVectoiinstance, expressing a mouse move-
ment, with the view port coordinate system as internal sg@cpixel coordinates).
Suppose we want to translate the object by the mouse moveiteatorresponding
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code could be as simple abj Pos = obj Pos + nouseMove; asis shown in
the following code:

voi d Transl at e( geoPoi nt & obj Pos, const geoVect or & nouseMbve)

{
}

The functionTranslatéllustrates the code that a user of the Coordinate Spaced-ram
work would write. Note that the internal coordinate spackethe variables in this
expression typically will be different. Theperator+unction shows how the frame-
work deals with this code internally. TheouseMove variable is queried in the
coordinate space of thebj Pos variable:

obj Pos = obj Pos + nobuseMve;

geoPoi nt geoPoi nt::operator+ (const geoVector& vec) const

{
}

return geoPoi nt (m coordi nates + vec. Get(m space), m space);

The overloadeaperator+of the geoPointclass will take care thatouseMove
is transformed to the coordinate spaceotf Pos. The Get member function of
the geoVectorclass will transform the internal values of thec variable from its
own internal space to the internal space of thg Pos variable, and then the two
can be added without any problems. This feature leads to pemerful and sim-
ple code, as illustrated in thEranslatefunction, since the code expresses what you
want to achieve conceptually, instead of expressing alikiof difficult coordinate
transformations.

A.8 Real life examples

A.8.1 Mouse click on a voxel volume

Take an iso-surface rendered voxel volume, and suppose nitovdetermine which
surface voxel lies under the mouse cursor at a mouse clic&rder to do so, a line
through the cursor position (viewing ray) has to be intelesgtevith the iso-surface.
This line is defined by the cursor position and the camera abrim the case of a
parallel projection, and by the cursor position and the carfecus point in the case
of a perspective projection. Using the presented frameyitigno problem to define
a line from two points which are constructed in different iboate systems. After
the line has been defined, it can be easily obtained in voxatespusing theGet
function. Then it should be passed to a 3D variant of Bresarthalgorithm @],
to deliver the intersection point.

A.8.2 Defining points of interest

Let’s consider an application with two windows next to eatneq, in order to view
two registered multi-modality volumetric data sets. In orewv a slice of the refer-
ence data set is displayed, while in the other the correspgndterpolated surface
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Figure A.4: Planning the location of the CT slices, with tilted gantry. The gantry is tilted to
avoid radiating the eyes, while capturing a maximum of relevant anatoratal

through the other data set is shown (non-affine registratidrmouse click marks a
point of interest in one data set. The point can be constilladdollows:geoPoi nt
nmousePnt (vi ewport1l.x, viewportl.y, 0); Drawing the corresponding
point in the other view is as simple &3l ot ( mousePnt . Get (vi ewport?2));,
assuming that th&Jlot function is a library function that takes pixel coordinates
input.

Note that theGetfunction transforms theousePnt coordinates first from view-
portl (pixels) to world coordinates (millimeters), which a rigid transformation.
Then the coordinates are transformed from world coordmetehe frame of refer-
ence of volume2, which is a non-affine transformation, etegtby a different trans-
formation class. Finally the coordinates are transformenhfthe frame of reference
to viewport2, which is a rigid transformation again, deting the pixel coordinates
of the point to be plotted. This complete procedure remaicddn for the user of the
framework.

A.8.3 Gantry-tilt CT volumes

CT volumes, which have been acquired with a tilted gantrgdpce a voxel space
with non-orthogonal axes (see figuire A.4). Typically suchusmes are resampled
on a orthogonal grid for volumetric visualization, leaditogloss of image quality.
However, it is possible to encapsulate the shearing (skeat)i$ introduced by the
non-orthogonality in an affine transformatiang, expressed in a 4*4 matrix). In this
way the data can be depicted without resampling, using aunéwork.

For instance, a ray-cast algorithm could define the vieways in camera space,
and feed them to the interpolator. The interpolator quettiesrespective rays in
voxel space, and th&et function takes care of the transformation from camera to
world space to voxel space. The latter step involves ther sipgaation.
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A.8.4 Follow camera orientation

Suppose we want one single object in the 3D scene always tadsemqed with
the same side to the camera. This object, however, shouldsitgned and scaled
according to its location in the sceniee( moving camera could change only the
rotation of the object, but not its translation or scaling® solve this task, we can
define togeoVect or instances in camera space, representingcthendy-axis of
the camera. For the-axis this can look like:

geoVect or x_canera(1, 0, 0, caner aSpace) ;

Now we will rotate the object such that itsaxis will point in the direction of the
cameraz-axis. To do so we query the cameraaxis in the coordinate space of the
object:x_caner a. Get (obj ect Space) ; The nice thing is that this produces the
orientation of the camera-axis in the object space instantaneously, no matter how
many nodes there are between the camera and the object icghe graph. The
vector still has to be normalized, and then the dot produttéen this vector and
the objectz-axis (which is simply (1,0,0)) delivers the cosine of thglanthat we
should rotate. The cross product delivers the rotation. a}ki® same procedure can
be followed to orient thg-axis correctly.

A.9 Conclusions

In this chapter we have introduced a generic software swlddr a flexible and trans-
parent framework for handling multiple coordinate spadése proposed framework
is especially powerful when the number of coordinate spacksge and their rela-
tions are dynamic, such asagy, the case in multi-modality medical applications.

The complexity of dealing with multiple coordinate spades In the transforma-
tion between the individual spaces. The strength of thegwep framework is the
fact that these transformations are maintained at a sipgie and in the rest of the
code no awareness of these transformations is needed. Jiiiémg code expresses
conceptually what the programmer wants to achieve, instéadpressing all kinds
of difficult coordinate transformations.

In the case that the actual values of a geometry object aedesith respect
to a certain coordinate space, these can only be obtainedigidy passing the
desired coordinate space to t&et operation. This severely reduces the chance of
‘assuming’ a wrong coordinate space, one of the most comraases of bugs in
such applications. If a transformation is needed from therival coordinate space
to the requested one, the transformation is performed aitoatly, and hidden from
the user of the function call.

It is worth mentioning that the described framework has smtessfully imple-
mented in two medium and three large scale software projects
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