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Abstract

Multi-modal image fusion during
minimally invasive treatment

The volume of image guided interventions and therapy is rapidly increasing, because
of associated better clinical outcome and reduced patient strain. During such mini-
mally invasive medical treatment the clinician relies on radiological images, often
produced in real-time, to guide the intervention. Prior to treatment, diagnosis and
intervention planning is frequently performed using tomographical images, which
provide a detailed representation of the patient’s anatomyand pathology. In this the-
sis the fusion of those different types of images is presented, in order to provide the
clinician with more relevant data to guide the procedure. Since the fusion is per-
formed during the clinical intervention, it is essential that the technical steps can be
executed within limited time. Furthermore, it is vital thatthe resulting fused repre-
sentations are easy to interpret. The technical approachesthat are described here to
achieve this goal comprise fast and intuitive visualization of the fused data and rapid
co-registration of multiple image datasets.

In order to achieve an optimal performance the parallel computation power of
the graphics processing unit (GPU) has been exploited in thevisualization and re-
gistration algorithms. Regarding visualization, a dedicated direct volume rendering
approach was developed, taking the particularities of the GPU into account. This
volume rendering technique has been applied in the efficientfused visualization of
multiple datasets, and in the interactive rendering for autostereoscopic displays. An
elastic B-spline driven registration method has been mapped on the GPU to accom-
plish minimal computation times. Furthermore, registration algorithms especially
designed for peri-interventional usage were examined. A registration method only
using the geometry information of the X-ray C-arm system hasbeen described, and
a dedicated registration algorithm targeted at real-time vascular images has been de-
veloped.

The proposed techniques have been validated individually,and have been eval-
uated together in three concrete clinical applications: multi-modal roadmapping for
neuro-vascular treatment, multi-modal needle puncture planning and tracking, and
CT fusion with X-ray angiography for stent placement withincoronary artery disease
treatment.

iii



iv Abstract

Multi-modale beeldfusie tijdens
minimaal-invasieve behandelingen

Het aantal beeldgestuurde medische interventies neemt snel toe, vanwege de geas-
socieerde verbeterde klinische resultaten. Gedurende minimaal invasieve medische
behandelingen vertrouwt de arts enkel op radiologische beelden om het verloop van
de interventie te sturen. De diagnose en het behandelplan isvaak voorafgaand aan de
behandeling uitgevoerd op basis van tomografische beelden.Deze bieden een gede-
tailleerde afspiegeling van de anatomie en pathologie van de patïent. In dit proef-
schrift wordt de fusie van deze verschillende typen van beelden voorgesteld, om de
arts meer relevante data om de procedure te leiden aan te bieden. Aangezien deze
fusie tijdens de klinische interventie wordt verricht, is het essentieel dat de noodza-
kelijke technische stappen binnen een beperkte tijdsduur kunnen worden uitgevoerd.
Verder is het van vitaal belang dat de resulterende beelden eenvoudig zijn te inter-
preteren tijdens de behandeling. De technische stappen, die in dit proefschrift wor-
den beschreven, omvatten snelle en intuı̈tieve visualisatie van de gefuseerde data en
snelle co-registratie van meerdere beelddatasets.

De parallelle rekenkracht van de grafische processor eenheid (GPU) wordt benut
om optimale prestaties te behalen in de visualisatie- en registratiealgoritmes. Met
betrekking tot visualisatie is er een directe volume rendering techniek ontwikkeld die
rekening houdt met de specifieke eigenschappen van de GPU. Deze volume render-
ing techniek is vervolgens toegepast in de efficiënte gezamenlijke visualisatie van
meerdere datasets, en in de interactieve rendering voor autostereoscopische scher-
men. Een elastische registratiemethode, gebaseerd op B-splines, is op de GPU geı̈m-
plementeerd om minimale rekentijden te bereiken. Verder zijn registratiealgoritmes
onderzocht die bedoeld zijn voor peri-interventioneel gebruik. Een registratiemetho-
de die enkel de geometrie informatie van het Röntgen C-arm systeem gebruikt is
beschreven, en er is een registratiealgoritme ontwikkeld dat speciaal toegesneden is
op real-time vasculaire beelddata.

De voorgestelde technische oplossingen zijn individueel gevalideerd, en zijn sa-
mengesteld gëevalueerd in drie concrete klinische toepassingen: multimodale road-
mapping voor neurovasculaire behandeling, multimodale naald punctie planning en
navigatie, en CT fusie met angiografische Röntgen voor het plaatsen van stents in
vernauwingen in de kransslagader.
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Multi-modale beeldfusie tijdens
minimaal-invasieve behandelingen

1 Achtergrond

Bij een minimaal invasieve operatie wordt de patiënt behandeld via katheters, naalden
of andersoortige instrumenten. Dit in tegenstelling tot traditionele chirurgie, waarbij
de patïent opengesneden wordt om de pathologie te behandelen. De navigatie van de
minimaal invasieve instrumenten in het lichaam van de patiënt gebeurt met de hulp
van medische beeldvormende apparatuur, zoals Röntgen en ultrasound. Aangezien
dit type behandelingen minder trauma veroorzaken, worden ze over het algemeen
geassocieerd met kortere verkoevertijden en betere klinische resultaten. Minimaal
invasieve technieken worden dan ook ingezet voor een steedsgroter palet van aan-
doeningen, en het volume per aandoening neemt eveneens toe.Voorafgaand aan de
invasieve behandeling wordt er vaak een drie dimensionale tomografische afbeelding
in een CT of MRI scanner gemaakt. Deze scan bevat een gedetailleerde afspiegeling
van de anatomie en pathologie van de patiënt en wordt daarom gebruikt tijdens de
diagnose en ook voor het opstellen van een behandelplan.

In dit proefschrift worden technieken geı̈ntroduceerd en uitgediept om de ver-
schillende beschikbare beeldinformatiebronnen te mengengedurende de behandel-
ing. Deze technieken betreffen visualisatiemethoden en methoden voor de beeldre-
gistratie van de verschillende beelden. De nadruk wordt in dit proefschrift gelegd
op snelle algoritmes en intuı̈tieve visualisatie. De parallelle rekenkracht van de gra-
fische processor eenheid (GPU) wordt benut om optimale prestaties te behalen in
de visualisatie- en registratiealgoritmes. Snelheid is zeer belangrijk aangezien het
rekenwerk wordt uitgevoerd terwijl de klinische interventie aan de gang is. Intuı̈tieve
interactie is eveneens essentieel, aangezien de arts zijn aandacht moet verdelen over
het verloop van de behandeling en de stimuli die van de patiënt en de vele apparaten
in de operatieruimte afkomstig zijn. Bovendien leidt een intüıtieve interactie tot een
kleinere kans op het maken van fouten.

v
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2 Visualisatie

De intra-operatieve setting en dynamiek verschillen behoorlijk op belangrijke pun-
ten van die van een diagnostische omgeving. Dit resulteert in andere functionele
eisen die aan de intra-operatieve visualisatie worden gesteld. De waarnemer van
intra-operatieve beelden zit typisch niet achter een desktop werkstation, maar staat
achter de behandeltafel waarop de patiënt zich bevindt. Dit beperkt de manier van
interactie met het werkstation. Verder is de primaire focusvan de behandelende arts
bij voorkeur gericht op de patiënt en het verloop van de behandeling, en niet op de
interactie met de computer. Aangezien de navigatie van de minimaal invasieve in-
strumenten geschiedt aan de hand van de live beelden die middels de beeldvormende
apparatuur worden gemaakt, zijn deze beelden van eminent belang. Toch vormen zij
slechts een van de bronnen van stimuli, die de arts moet verwerken tijdens de be-
handeling. Verder is het ook van belang om te realiseren dat er slechts beperkte tijd
beschikbaar is om de beelden te interpreteren, zeker als er stress situaties optreden
tijdens de behandeling.

Al deze factoren leiden tot de eis dat de interactie met de beelden eenvoudig is
en dat de intra-operatieve visualisaties makkelijk te interpreteren zijn, zonder com-
promissen te sluiten in de visualisatie van de klinisch relevante details. Dit maakt
populaire diagnostische visualisatie methoden voor gefuseerde datasets zoals zij-aan-
zij of schaakbord presentaties van 2D dwarsdoorsneden ongeschikt, aangezien zij
teveel interactie vereisen en het teveel tijd kost om ze te interpreteren. In plaats daar-
van is een eenvoudige 3D weergave vereist, die alle relevante details toont. Dit is een
uitdagende opgave, aangezien gefuseerde data een zeer grote hoeveelheid informatie
binnen een beperkt volume pakt, en de resulterende visualisatie vaak moeilijk in een
oogopslag te behappen is. Verder is er vaak veel tijd nodig omeen afbeelding uit
de enorme hoeveelheid data te genereren, hetgeen interactieve manipulatie bemoei-
lijkt. Dit proefschrift beoogt om technische oplossingen te vinden voor de geschetste
problemen.

2.1 Snelle volume rendering

Volume Rendering is een methode om drie dimensionale volumetrische voxel data
direct (dus zonder voorbewerking) af te beelden op een twee dimensionaal vlak. Tij-
dens het uitvoeren van deze methode worden optische eigenschappen zoals kleur en
transparantie aan elk punt in de continue ruimte toegekend.Dit gebeurd door de
scalaire waarden op de discrete voxelposities te interpoleren in de continue ruimte.
De scalaire waarden worden vervolgens afgebeeld op kleur entransparantie waarden
middels een transferfunctie. De twee dimensionale afbeelding wordt verkregen door
de volgende formule toe te passen op lichtstralen die door decontinue ruimte gevolgd
worden:

i =

∞
∫

0

c(x) · e
−

x
∫

0

τ(x′) dx′

dx (0.1)

Hier representeerti de resulterende kleur op de 2D afbeelding,c(x) de kleur op posi-
tiex enτ(x) de lichtabsorptie (het tegenovergestelde van transparantie) op die positie,
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ray of light

Eye

λ x

volumescreen

Figuur 1: Het volume render proces; de lichtstralen door de pixels van het scherm worden
door het voxel volume geprojecteerd, en de volume render formule 0.1 wordt op deze trajecten
toegepast.

zie figuur 1. Deze volume render vergelijking kan worden benadert door een aantal
discrete samples op de te volgen straal te nemen en in de volgende sommatie in te
vullen:

i =

N
∑

n=0

(αn cn ·

n
∏

n′=0

(1 − αn′)) (0.2)

Waarbijαn voor de opaciteit encn voor de kleur van samplen staat. Deze formule
kan zeer efficïent worden uitgevoerd op de grafische hardware door op regelmatige
afstanden dwarsdoorsneden van het volume te nemen, en deze middels zogenaamde
alfa-blending met elkaar te mengen [1–8], zie figuur 2.

Bij volume rendering draagt slechts een heel klein gedeeltevan alle voxels bij
aan het eindresultaat. Dit komt doordat de meeste voxels volledig transparant zijn
of verdekt worden door andere delen van het volume. Daarbij kunnen veel datasets
als relatief ’leeg’ worden aangemerkt; meestal bevat slechts 5% tot 40% van alle
voxels zichtbare data, en zelfs zeer gevulde CT en MR datasets overschrijden de 55%
zeer zelden. Met name vasculaire datasets zijn vaak ’leeg’,aangezien de bloedvaten
vanwege hun vorm een klein gedeelte van het volume vullen (typisch 1% tot 8%).

De leegte van het voxel volume kan worden benut om het volume proces te ver-
snellen. Deze zogenaamde ’space-skipping’ strategie is reeds langere tijd bekend in
de literatuur [9–12]. In het kader van dit proefschrift is ereen ’space-skipping’ me-
thode ontwikkeld die in het bijzonder de eigenschappen van de grafische hardware
in aanmerking neemt door gebruik te maken van een dubbele data hïerarchie; Eerst
wordt het voxel volume in grote blokken opgehakt. De omvang van deze blokken
wordt zo afgestemd dat zij optimaal corresponderen met de capaciteiten van het tex-
tuurgeheugen op de grafische kaart. Lege blokken hoeven zelfs niet naar de grafische
hardware te worden verstuurd. Dan wordt er vervolgens per blok een octree structuur
opgebouwd, die de zichtbare data per blok representeert. Met behulp van de octree
kan dan onzichtbare data worden overgeslagen tijdens het volume rendering proces,
zie figuur 3. Dat deze strategie tot een behoorlijke extra snelheidswinst kan leiden
blijkt uit tabel 1.
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Figuur 2: Links: Een middels volume rendering afgebeelde dataset met grote afstanden tussen
de dwarsdoorsneden. Rechts: Dezelfde dataset, maar nu met kleine afstanden tussen de dwars-
doorsneden.

2.2 Intuı̈tieve visualisatie

De intra-operatief geregistreerde data dient samen in een gefuseerd beeld te worden
getoond. Deze gefuseerde visualisatie moet eenvoudig geı̈nterpreteerd kunnen wor-
den, alle klinisch relevante details bevatten, en moet bovendien realtime gegenereerd
worden. Om dit voor elkaar te krijgen is er een methode ontwikkeld die 3D vas-
culaire data mixt met zowel 3D data die de zachte weefsels toont, alsook 2D live
fluoroscopische data. Daartoe wordt eerst de vasculaire dataset en zachte weefsel
dataset geregistreerd en een mesh model van de vatenboom in de vasculaire dataset
gëextraheerd. Om de vatenboom en de zachte weefsels te mengen wordt de mesh
eerst getekend en de data met de zachte weefsels daar door middel van volume ren-
dering in gemengd. Het z-buffer zorgt ervoor dat de kleuren van de mesh op het
juiste moment in de volume rendering vergelijking geweven worden. Zoals in figuur
4 te zien is, kunnen de delen van de vatenboom die verdekt worden door de zachte
weefsels als silhouet getoond worden. Op die manier blijft de vorm van de hele vaten-
boom en de zachte weefsels zichtbaar, terwijl het ook duidelijk is waar beiden elkaar

Figuur 3: Een fragment van een volume gerenderde afbeelding met (links) de brick blokken
zichtbaar, (midden) de octrees zichtbaar, en (rechts) beide structuren zichtbaar.
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Grafische kaart a b Versnellinga/b

nVidia QuadroFX 3000 AGP 25.5 fps 2.2 fps 11.6
nVidia QuadroFX 3400 PCIx 73.5 fps 9.6 fps 7.66
ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362
ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119
ATi Radeon 9000 mobility 9.35 fps 0.26 fps 36.0
3DLabs Wildcat 7110 21.3 fps 0.38 fps 56.1

Tabel 1: Gemiddelde beeldverversingssnelheden met (a) de optimale combinatie van brick
blokken en octrees, en (b) GPU volume rendering zonder brick blokken en octrees.

Figuur 4: De silhouet visualisatie maakt het mogelijk om de verdekte delen van de vaten-
boom in relatie met de contextuele data te tonen, terwijl het beeld toch eenvoudig te bevatten
blijft. Links: de cerebrale bloedvaten, gesegmenteerd in een 3DRA dataset. Rechts: de cere-
brale bloedvaten gecombineerd met een volume gerenderd gedeelte van een MR dataset. Het
aneurysma, dat door de MR data bedekt is, blijft dankzij het silhouet toch zichtbaar.

raken. Het live fluoroscopisch beeld kan daar vervolgens overheen gelegd worden, en
afhankelijk van het onderliggend onderwerp anders bewerktworden, zie figuur 5.

Om de 3D vorm tijdens de klinische interventie in een enkele oogopslag behap-
baar te maken is het mogelijk om de data op een autostereoscopisch scherm weer
te geven. Stereoscopische perceptie staat een complete drie dimensionale indruk
toe, zonder dat de klinische dataset daarbij bewogen hoeft te worden. Dit leidt tot
minder interactie met de computer en daardoor tot tijdswinst tijdens de interventie.
Om 3D data op een autostereoscopisch scherm te tonen moet deze vanuit meerdere
kijkrichtingen (negen voor het scherm dat wij gebruiken) gevisualiseerd worden,
zie figuur 6. Aangezien dit een behoorlijke impact op de visualisatiesnelheid heeft
hebben we een aanpak onderzocht waarbij we de resolutie van de negen beelden dy-
namisch aanpassen, afhankelijk van de gevraagde snelheid en de beschikbare reken-
capaciteit. Als er veel veranderingen van de beelden nodig zijn wordt de resolutie



x Nederlandse samenvatting

Figuur 5: Links: een fluoroscopie beeld. Midden: het fluoroscopie beeld gemixtmet de 3DRA
vatenboom. Rechts: het fluoroscopie beeld gemixt met de 3DRA vatenboom en een dwars-
doorsnede van een CT dataset.

Figuur 6: Het licht van de LCD sub-pixels wordt in verschillende richtingen afgebogen door
de lenticulaire lenzen.

omlaag geschroefd, om zo de benodigde snelheid te halen, terwijl bij trage of geen
veranderingen de scene in een hoge resolutie getekend kan worden. Daarbij is de
optimale resolutie afhankelijk van het pixelgrid, dat bij autostereoscopische scher-
men typisch geen orthogonaal grid is. De optimale resolutievan de verschillende
kijkrichtingen is te bepalen door dit non-orthogonale gridin het frequentiebereik te
onderzoeken, zie figuur 7.

3 Registratie

Registratie is een proces waarbij het doel is om twee beelddatasets van hetzelfde on-
derwerp spatieel dusdanig op elkaar af te beelden, dat dezelfde anatomie in beide
beelden over elkaar heen ligt. Meestal wordt daarbij een vanbeide datasets spatieel
gemanipuleerd (de floating dataset), terwijl de ander stil ligt (de referentie dataset).
De toepassing van beeldregistratie tijdens een klinische interventie stelt grenzen aan
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Figuur 7: (a) Het LCD pixel grid met daarin het nummer van de kijkrichting waarin de
sub-pixels worden afgebogen. De groene sub-pixels die in kijkrichting 0 (rechtdoor) worden
getoond zijn omcirkeld. (b) Alle sub-pixels, onafhankelijk van hun kleur, die in kijkrichting
0 (rechtdoor) worden getoond zijn omcirkeld. (c) Het rooster van de groene sub-pixels voor
kijkrichting 0 in het frequentiebereik. De Voronoi cel van het rooster is roze gemarkeerd. In
blauw is de Nyquist frequentie van het orthogonale grid van de gegenereerde beelden gemar-
keerd. Aangezien de Voronoi cel niet het hele Nyquist bereik omvatkan er lichte aliasing
optreden in de hogere frequenties. (d) Het rooster van de sub-pixels voor kijkrichting 0, on-
afhankelijk van hun kleur. Aangezien het Nyquist frequentiebereik (blauw) binnen de Voronoi
cel (roze) valt, zal er geen aliasing in het intensiteitsbeeld optreden.

het algoritme en de mogelijkheid om te interacteren met de gebruiker. De voornaam-
ste beperking is de beschikbare rekentijd. Ondanks de stormachtige ontwikkelingen
van de rekenkracht van moderne computers hebben registratiealgoritmes de neiging
om enkele minuten tot zelfs meerdere uren in beslag te nemen.Voor het gebruik
tijdens interventionele behandelingen is dat echter niet acceptabel.

Veel registratiemethodieken hebben profijt van interactiemet de gebruiker. Ze
hebben input van de gebruiker nodig om de registratietaak uit te voeren, of presteren
aanzienlijk beter na een grove initialisatie door de gebruiker. De mogelijkheden tij-
dens de klinische interventie zijn echter beperkt. De arts,die aan de behandeltafel
staat, heeft vaak minder ergonomische en exacte inputapparatuur tot zijn beschikking
(o.a. vanwege steriliteit). Verder is de tijd en aandacht die de arts aan de invoer voor
het registratiealgoritme kan besteden beperkt. De methoden die in de context van dit
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proefschrift zijn ontwikkelt nemen deze beperkingen in aanmerking.
Een van de invalshoeken die zijn uitgewerkt betreft GPU acceleratie van niet-

rigide registratie. Hierbij wordt het vervormingsveld vande floating dataset gevormd
door kubische B-splines met controlepunten op regelmatigeafstanden. De versnelling
van het algoritme wordt enerzijds gehaald uit het parallellisme in de GPU, en ander-
zijds door de kubische B-splines op efficiënte wijze te berekenen. Het is namelijk
mogelijk om een kubische B-spline uit een aantal lineaire interpolaties op te bouwen
(voor 3D kunnen 64 directe samples vervangen worden door 8 lineaire interpolaties)
[13]. Aangezien lineaire interpolatie op de GPU ongeveer even snel is als het direct
samplen van de data levert dit een aanmerkelijk voordeel op.De similariteitsmaatE
die door ons registratiealgoritme gebruikt wordt dient in de volgende vorm te kunnen
worden uitgedrukt:

E =
1

‖I‖

∑

~i∈I

e
(

A(~i), B(~τ(~i))
)

(0.3)

WaarbijI de set van pixelposities is,e de bijdrage aan de similariteitsmaat per pixel,
A het referentiebeeld,B het floating beeld, enτ het B-spline vervormingsveld. De
afgeleide naar de B-spline controlepunten ziet er als volgtuit:

δE

δcj,k

=
1

‖I‖

∑

~i∈I

δe(~i)

δBτ (~i)

δB(~x)

δxk

∣

∣

∣

∣

~x=~τ(~i)

δτk(~i)

δcj,k

(0.4)

Hierbij staatcj voor een controlepunt en indexk voor dek-de component in de vector
(de as). Het kennen van de afgeleide heeft als voordeel dat een efficiëntere optima-
lisatiestrategie benut kan worden, zoals b.v. quasi-Newton, waardoor de registratie
sneller uitgevoerd kan worden. De GPU implementatie bestaat uit twee stappen; In de
eerste stap wordt het floating beeld vervormd, de contributie aan de similariteitsmaat
per pixel bepaald, en het gradiënt per pixel. In de tweede stap wordt vervolgens de
afgeleide per controlepunt berekend uit de informatie in deeerste stap. Deze aanpak
leidt tot een snelheidswinst van ongeveer factor 50 ten opzichte van een rechttoe
rechtaan CPU versie.

Een andere registratiemethode die uitgewerkt is in dit proefschrift betreft de 2D-
3D registratie van vaten in fluoroscopie en CT beelden. De primaire toepassing van
deze methode is de registratie van hartkransslagaders. Vandeze vaten zijn namelijk
geen subtractie angiografie beelden beschikbaar, en daardoor is de segmentatie van
de live fluoroscopie beelden niet triviaal. In onze aanpak vermijden we dit probleem
door geen expliciete segmentatie van de fluoroscopie beelden uit te voeren. In plaats
daarvan passen we een vesselness filter op deze beelden toe [14], en gebruiken we
het resultaat daarvan direct in de voorgestelde similariteitsmaat, zie figuur 8. Vooraf-
gaand aan de registratie worden de bloedvaten gesegmenteerd in de CT dataset. De
gesegmenteerde vaten worden voor elke nieuwe spatiële transformatie geprojecteerd
op het vlak van de fluoroscopische beelden en daar wordt vervolgens een afstand-
stransformatie op toegepast, zie figuur 9. De similariteitsmaat is het in-product van
het vesselness en het afstandstransformatie beeld. Onze proeven met gesimuleerde
en klinische data laten zien dat deze aanpak beter werkt dan de iterative closest point
(ICP) [15] methode.
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Figuur 8: Links: R̈ontgenbeeld van de hartkransslagaders. Rechts: Vesselness transformatie
van hetzelfde R̈ontgenbeeld.

Figuur 9: Links: Afstandstransformatie van de geprojecteerde hartkransslagaders uit de 3D
CT dataset. Rechts: Hetzelfde beeld gekwadrateerd.

4 Conclusies

De hier beschreven technische oplossingen zijn gezamenlijk gëevalueerd in een drie-
tal concrete klinische toepassingen: 1) Het navigeren van de katheter op basis van
meerdere beeldinformatiebronnen tijdens de behandeling van arterio-veneuze mal-
formatie (AVM) in de hersenen, zie figuur 10. 2) Het plannen ennavigeren van
een punctienaald op basis van diagnostische CT beelden en tegelijkertijd live fluo-
roscopische beelden, zie figuur 11. 3) Het optimaal plaatsenvan een stent in een
vernauwing in een kransslagader, eveneens op basis van navigeren en plannen met
behulp van diagnostische CT beelden gemixt met live angiografische beelden, zie
figuur 12.

De algoritmes zijn hiertoe in klinische prototypes geı̈mplementeerd, die door het
ziekenhuispersoneel zelfstandig bediend konden worden. De evaluatie heeft plaats
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Figuur 10: Linksboven: Een MR beeld toont een arterioveneuze malformatie (AVM) en het
getroffen hersenweefsel (gele pijlen). Rechtsboven: Het live fluoroscopiebeeld zonder con-
trastmiddel laat de voerdraad zien, maar niet de relatie met de vatenboom en zachte weefsels.
Linksbeneden: Het fluoroscopiebeeld gemixt met de 3DRA vatenboomvoegt de vasculaire con-
text toe aan de live data. Rechtsbeneden: Het fluoroscopiebeeld, de 3DRA vatenboom en een
dwarsdoorsnede van de MR data. De MR dwarsdoorsnede staat altijd parallel haaks op de
kijkrichting, en is gepositioneerd op het voerdraad uiteinde.
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Figuur 11: De pre-operatieve CT data (geel) en de intra-operatieve C-arm cone-beam CT
data (rood) worden samen met het geplande pad (groen) getoond. Links: schuin aanzicht van
links. Rechts: Posterieur schuin aanzicht.

Figuur 12: (a) Gefuseerd beeld van cardiac CT data (rood) en live Röntgenbeelden (grijs) voor
de navigatie in een chronisch totaal-geoccludeerd (CTO) vat. Het door middel van de katheter
gëınjecteerd contrastmiddel (wit) penetreert de circumflex (LCX) niet, terwijl het traject van
het vat wel zichtbaar blijft via de CT overlay. (b) De corresponderende gekromde MPR, laat
de CTO en retrograde vulling van het vat zien.
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gehad in een achttal ziekenhuizen in Europa, Noord-Amerikaen Azïe. Tijdens vijf
internationale medische conferenties zijn er live puncties en angiografische behan-
delingen uitgezonden vanuit de interventiekamer waarbij de genoemde prototypes
werden gebruikt. De beschreven technologieën zijn vervolgens geı̈ntegreerd in com-
mercieel beschikbare producten (Philips Allura 3D-RA, metmeer dan 500 exem-
plaren verkocht, en Philips Allura XperGuide), die in ziekenhuizen over de hele
wereld gëınstalleerd zijn.

In alle klinische toepassingen werden meerdere beelddatabronnen tijdens de inter-
ventie gecombineerd in een coherent samenhangend gefuseerd beeld dat de klinisch
relevante gegevens op een behapbare wijze presenteert. De voorgestelde technische
oplossingen dragen hier in hoge mate aan bij, zowel betreffende de intüıtieve visuali-
satie alsook de beperkte rekentijd van de algoritmes. Beiden zijn zeer van belang om
deze technieken routinematig in te zetten tijdens klinische behandelingen.
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Chapter 1

Introduction

1.1 Background

Advances in medical scanning technology provide a wide spectrum of valuable and
complementary information about a patient’s pathology, anatomy, and physiology.
The signals that are produced by these scanners differ in dimensionality, scale, ex-
tent, and biological origin. The technological and clinical advances have brought a
tremendous growth in the use of radiological images during the last decades. The
optimal exploitation of this wealth of information in the clinical treatment is a dif-
ficult task. Especially the combination of the information produced by the different
scanning techniques may be very useful, since the complementary information may
lead to a better insight, but also poses significant technical hurdles.

Image guided interventions and therapy (IGIT) are becomingincreasingly popu-
lar in todays healthcare system. The minimally invasive nature of these procedures
is often preferred over open surgeries because less trauma to the patient’s body is
caused, which generally is associated with easier and faster recovery. Interventional
radiologists and surgeons are also becoming more experienced and comfortable in
performing these procedures. The minimally invasive interventional clinicians use
instruments such as needles and catheters to perform the diagnostic and therapeutic
procedures, which are guided by imaging equipment.

1.2 Objectives of the thesis

It is the topic of this thesis to combine multiple sources of image data into a coher-
ent presentation for usage during minimally invasive treatment, assuring usable and
cognitively adequate interaction by the interventionalist.

During minimally invasive procedures the clinician guidesthe treatment based
on the real-time intervention image flow. Often there are already diagnostic im-
ages available, prior to the intervention, frequently alsoused for treatment planning.
The integration of these pre-interventional data sources with the intra-interventional
images can lead to an improved information basis during the clinical procedure.

1



2 Introduction

The pre-interventional data can provide complementary pathological, anatomical,
and/or physiological data. Furthermore, the data fusion allows to project the pre-
operative treatment planning on the real-time image data, which can provide a valu-
able roadmap to guide the procedure.

There are several constraints to the usage of several sources of image data. First
of all, there are usually strict computation time restrictions to calculations that are
being executed during the clinical procedure, since the patient is prepared for the
interventional treatment, and an expensive clinical team and equipment are waiting.
Since many algorithms can only start to work after data has been acquired during
the course of the intervention, it is inevitable that those programs will occupy some
procedure time. Furthermore, it is of greatest importance that the interaction with the
computer is easy, and imposes the smallest possible cognitive strain on the physician.
The clinician has to focus primarily on the treatment itself, and is often overloaded
with many stimuli, originating from a multitude of devices,interventional staff, and
pathological anatomy. Therefore, great care has to be givento the user interaction
and visualization of the fused data.

It is the objective of this thesis to present practical technical solutions to the topic
of peri-interventional image fusion. It should be possibleto utilize these solutions in
the clinical practice, without loss of general applicability. Furthermore, it is the goal
to demonstrate the value of the technical solutions by employing them in a number of
clinical applications.

1.3 Overview of the thesis

This thesis is presented in three main parts; The visualization techniques that were
used to accomplish efficient and easy to interpret images during the clinical interven-
tion are presented in part I. The registration methods that serve to obtain the integra-
tion of the multi-modal data during the intervention are described in part II. Finally,
the clinical experience with the assembly of those techniques can be found in part III.
However, before we dive into the first part, the background ofthose techniques and
clinical applications is sketched. Therefore, the thesis starts with an overview of the
X-ray imaging techniques that are encountered in a catheterization laboratory (cath-
lab) and their historical context in chapter 2.

Then part I begins with the topic of accelerating volume rendering by using the
vast processing power of the Graphics Processing Unit (GPU)in chapter 3. The ex-
amination of the various bottlenecks that are encountered within the GPU, has led
to an optimized rendering approach, using a double space skipping hierarchy. The
following chapter 4 extends the volume rendering method to deal with multiple three-
dimensional and two-dimensional datasets. This enables the fused representation of
multi-modal data, which is used in part III. Special attention has been paid to main-
tain interactive frame rates, which is of utmost importancefor visualization of image
data that is being used for interventional guidance. This part concludes with chap-
ter 5, which describes the application of the earlier introduced rendering techniques
to autostereoscopic displays. Such displays allow a viewerto perceive depth with-
out the aid of external glasses. The challenge posed by such displays is the fact that
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they need the same scene rendered from a number of viewing positions, and therefore
impose a high load on the rendering system.

Part II first provides a general context to image-based registration algorithms in
chapter 6. This chapter also briefly describes registrationbased on the mechanical
X-ray geometry parameters, which is always real-time and does not depend on land-
marks being present in the image. In order to achieve fast elastic registrations, a
prerequisite in order to use them interventionally, chapter 7 explores how the GPU
can be used to accelerate this task. This chapter especiallyfocusses on the precision,
the implementation and the performance aspects. Chapter 8 presents a new similarity
measure that especially has been developed for the registration of two- and three-
dimensional datasets containing the coronary arteries. Italso provides the validation
that has been conducted on this method.

The clinical experience that was gathered with these techniques is presented in
part III. Chapter 9 describes the clinical aspects of using multi-modality registration
and fused visualization in the roadmapping of intravascular devices for neuroangiog-
raphy. The focus lies on the treatment of arteriovenous malformations. Chapter 10
presents the approach that was developed to plan and guide percutaneous needle in-
sertions. This chapter especially describes the application of this technique within the
embolization of paragangliomas (glomus tumors). The clinical application of image
fusion in the treatment of coronary artery disease is the topic of chapter 11. Finally,
chapter 12 concludes this thesis with a summary and discussion of the obtained re-
sults.

A design pattern, which was developed to manage many coordinates systems in
large software packages, is described in appendix A. This design pattern was used
in all the clinical applications that are presented in part III, and aided considerably in
dealing with a vast number of coordinate spaces in a flexible and transparent manner.

Since the technical scope of this thesis is rather wide (containing both visualiza-
tion and registration aspects), there is not a separate chapter dealing with the state of
the art. The related work is described instead in the respective chapters throughout
the thesis.

1.4 Major contributions

The major contributions of this thesis are:

• The introduction of a double space-skipping hierarchy to GPU-accelerated vol-
ume rendering, employing bricks and octrees. Since this solution is tailored to
the bottlenecks found in the GPU, it helps to reach the maximum performance,
especially when volume rendering large datasets that even might exceed the
memory available to the GPU.

• An analysis of the optimal resolution for rendering to autostereoscopic dis-
plays. This analysis is then used in dynamically balancing the resolution to
achieve a balance between maximum detail and reasonable performance.

• The in-depth exploration of the precision aspects of GPU-accelerated B-spline
evaluation. Especially when the GPU is applied for general purpose image
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processing tasks in a clinical context, it is of highest importance to know its
precision and numerical behavior.

• The application of GPU acceleration to elastic image registration. In order to
apply image registration during a clinical intervention, it is essential that its
results are available within a limited time frame. The GPU acceleration helps
in achieving this goal.

• A novel similarity measure has been developed to register two- and three-
dimensional vascular data. This method was deemed necessary since existing
methods did not perform well enough for the task of registering the coronary
arteries. The new approach was found to improve on this task,as has been
demonstrated by the validation results.

• The evaluation of aforementioned techniques in the clinical practice. The meth-
ods described in this thesis have been applied in various clinical interventions.
The results have been reported in the medical literature andas such have be-
come part of the state of the art.

• The development of a coordinate space management framework. This frame-
work allows to administrate many dynamically linked coordinate spaces. Fur-
thermore, it removes the explicit conversion from the programming code, and
therefore is less prone to programming errors.

The idea of the coordinate space framework was born during a discussion with
Jeroen Terwisscha van Scheltinga. Obviously, many people have been involved in
the clinical evaluation of the techniques. All other mentioned points are the sole
work of the author of this thesis.



Chapter 2

Interventional X-ray

2.1 Angiographic X-ray

Throughout 1895 Wilhelm Conrad Röntgen (1845-1923) was examining the exter-
nal effects of various vacuum tubes. During an experiment onNovember 8, 1895,
whereby a cardboard was blocking all visible light, he noticed a fluorescent effect on
a nearby cardboard, which was painted with barium platinocyanide. This motivated
Röntgen to conduct a series of experiments, from which he speculated that the flu-
orescent effect was caused by a new type of radiation, which he temporarily named
’X-rays’ [16]. It would be unjustified to attribute the discovery of X-radiation merely
to coincidence. R̈ontgen had planned to use the barium platinocyanide paintedcard-
board in a next series of experiments, and it would have been likely that he would
have discovered X-rays in those trials. In 1901 Röntgen was awarded the first Nobel
prize in physics for his discovery.

Already in December of 1895 R̈ontgen produced the first human radiograph, by
imaging his wive’s hand, see figure 2.1a. Within two months ofRöntgen’s discovery,
Haschek and Lindenthal managed to demonstrate the blood vessels in a cadaver hand
by injecting a suspension of chalk and cinnabar (mercury sulfide) in oil [17], see
figure 2.1b. A comprehensive overview of the consequent steps leading to modern
percutaneous coronary angiography is given by Meier [18].

2.2 First in-vivo catheterizations

In 1929 Werner Forssmann performed the first heart catheterization in a living hu-
man being; himself [19, 20]. With the help of a somewhat reluctant accomplice he
anesthetized his own elbow and performed a cut-down on his left arm and inserted
a well-oiled ureteral catheter via the left antecubital vein. His aim was to insert the
tube for a pre-measured distance in order to reach the right ventricle. After walk-
ing down to the X-ray department in the basement with the tubedangling from his
arm, he continued the procedure under fluoroscopy, with the aid of a mirror held by
his accomplice. However, because of the length of the catheter he was only able to
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6 Interventional X-ray

(a) (b)

Figure 2.1: (a) Roentgen’s first human radiograph, made in 1895. (b) First angiographic
recording, taken from a cadaver by Haschek and Lindenthal in 1896.

reach the right atrium. He then made some radiographs as documentary evidence, see
figure 2.2. Forssmanns superior, the surgeon Professor Sauerbruch, was not amused
by Forssmanns experiments. His response was “Mit solchen Kunstsẗucken habilitiert
man sich in einem Zirkus und nicht an einer anständigen Deutschen Klinik” (Tricks
like that qualify you for a circus and not for a leading Germanclinic). In the ensuing
row, Forssmann lost his job, but he shared the Nobel Prize forMedicine with Cour-
nand and Richards in 1956 for his ground breaking work in heart catheterization [18].

Charles Theodore Dotter can be credited for pioneering the field of interventional
radiology. He was the first to describe flow-directed ballooncatheterization, the
double-lumen balloon catheter, the safety guidewire, and the “J” tipped guidewire.
Percutaneous transluminal angioplasty was his landmark contribution [21]. Dotter’s
nonconservative ways (e.g., performing balloon angioplasty on patients that were re-
ferred explicitly for diagnosis only) hindered the acceptance of percutaneous min-
imally invasive interventions, and the medical society remained reluctant to accept
the ideas of Dotter, until Andreas Grüntzig, a Zurich cardiologist, published the first
percutaneous transluminal coronary angioplasty in 1977 [22]. Grüntzig invented the
miniaturized balloon-tipped catheter and developed the technique of coronary angio-
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Figure 2.2: The first in-vivo hearth catheterization, performed by Forssmann on himself in
1929.

plasty, based on the work of Dotter. Restenosis and the need for repeat interventions,
however, remained a severe limitation. This led to the development of a metallic in-
travascular scaffold, known as a “stent”, which is permanently placed at the stenotic
location [23] (seee.g., figure 2.3). Charles Dotter already introduced the concepts
of percutaneous arterial stenting and stent grafting by placing the first percutaneous
“coilspring graft” in the femoral artery of a dog. The first human implantation of
coronary stents was performed by Ulrich Sigwart and JacquesPuel in 1986 [24].

Figure 2.3: Example of a modern cardiac stent (Boston Taxus Express2.75 × 28 mm) and
guide wire.

2.3 The X-ray C-arm

Before the introduction of the C-arm system, the only possibility to perform live X-
ray acquisitions during surgery was the fluoroscope. This was a hand-held device with
a fluorescent screen, virtually unchanged since 1896, with avery poor light intensity.
To compensate high X-ray doses were used, leaving the surgeon poorly protected in
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Figure 2.4: The first X-ray C-arm system: the Philips BV20.

the X-ray beam. More detailed studies required radiographyon film to be developed
during the surgical procedure.

The first C-arm was developed together with the image intensifier (II) by the Ger-
man Philips Medical Systems organization in the early 1950s[25]. After a more
robust system was developed, mainly by Jacques Hoogeveen ofthe Philips Medi-
cal Systems factory in Eindhoven, it was commercially released in 1955 under the
name BV20 (“Bildversẗarker” or “Beeldversterker” with a 20 mA X-ray tube), see
figure 2.4. The bow could rotate in a propeller-fashion movement and slide through
a sleeve, providing a large degree of freedom in selecting a projection angle. This
mechanical approach to reaching rotational freedom remains unchanged until present
date. The II of the BV20 projected the intensified X-ray imagedirectly on a pair of
goggles, that could be viewed by one person, often in an awkward position. In 1958
the BV20 was equipped with an industrial TV chain instead of the goggles, which
made the X-ray image more accessible. In this way the whole surgical team could
follow the X-ray image, leading to better informed and faster operations. This II-TV
C-arm can be considered the first modality that enabled imageguided interventional
treatment on a routinely basis.

After these two revolutionizing innovations a period of evolution followed. Fixed
mounted larger C-arms next to the mobile ones, brought more mechanical stability
and reproducibility. The components of the imaging chain were gradually improved,
and the arrival of digital image processing enabled digitalimage enhancement and
archiving. However, the essential design of the C-arm remained unchanged until the
arrival of the flat detector (FD), which replaced the II. Solid-state digital radiogra-
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Figure 2.5: An intervention being performed, using a modern flat detector C-arm system.

phy detectors, commonly known as flat detectors, emerged just before the turn of the
millennium (figure 2.5). This new generation of digital image detectors contains a
thin layer X-ray absorptive material combined with an electronic active matrix ar-
ray. Principally two types exist; the indirect conversion (X-ray scintillator-based)
and direct conversion (X-ray photoconductor-based) types[26]. The production of
the flat detector bears a lot of resemblances with the production of micro-chips and
LCD displays, and was facilitated by the development of cost-effective production of
large LCD displays. Studies have shown that the FD performs superior in terms of
X-ray dose efficiency and image quality expressed as Detective Quantum Efficiency
(DQE) [27–30]. Furthermore it lacks the pincushion image deformation and sensi-
bilities to external magnetic fields that were characteristic for the II systems. During
clinical interventional treatment also the smaller form factor of the detector is an ad-
vantage in the already crowded intervention room. The minimally invasive clinical
applications that are presented in this work in chapters 9, 10 and 11 are based on the
live image guidance using this type of fixed mounted flat detector C-arm equipment.

2.4 3D reconstruction

2.4.1 X-ray attenuation

Suppose we have a thin piece of uniform radiopaque material of thicknessdx. From
an X-ray beam ofN photons,Nabs photons are absorbed by the material. The phys-
ical effects leading to the photon absorption are explainedin detail ine.g., [31]. The
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projection p(x)

slice s(k x )

Fourier
Transform

Figure 2.6: The projection slice theorem.

amount of absorbed photons is linearly proportional to the amount of entering pho-
tons, the thicknessdx and the radiopacity of the material, which is expressed by its
linear attenuation coefficientµ.

dN = −Nabs = −N · µ · dx (2.1)

When refraction and emission effects are disregarded, the situation above can be
easily extended to an X-ray beam traveling through non-uniform radiopaque material
by integrating the equation overx. The resulting formula is called theBeer-Lambert
equation.

N = N0 · e
−

x
∫

0

µ(x′) dx′

(2.2)

2.4.2 Filtered back-projection

The initial computed tomography (CT) scanner, as introduced by Godfrey Hounsfield
in the early 1970s, was based on the two dimensional projection-slice theorem. This
theorem states that the one-dimensional Fourier transformof the parallel projection
of a functionf(x, y) is equal to a slice of the two-dimensional Fourier transformof
functionf(x, y), whereby the direction of the slice is perpendicular to the direction of
the projection.E.g., when we project along they-axis (see figure 2.6), the projection
can be written as:

p(x) =

∞
∫

−∞

f(x, y) dy (2.3)

The Fourier transform off(x, y) is

F (kx, ky) =

∞
∫

−∞

∞
∫

−∞

f(x, y) e−2πi(xkx+yky) dx dy (2.4)
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The slices(kx) is then

s(kx) = F (kx, 0) =

∞
∫

−∞

∞
∫

−∞

f(x, y) e−2πi(xkx) dx dy

=

∞
∫

−∞





∞
∫

−∞

f(x, y) dy



 e−2πi(xkx) dx

=

∞
∫

−∞

p(x) e−2πi(xkx) dx

(2.5)

and that is just the Fourier transform ofp(x). The projection-slice theorem can also
easily be extended to higher dimensions.

The set of projections along straight lines is known as the Radon transform:

R[f ](α, s) =

∞
∫

−∞

f(x(t), y(t)) dt

=

∞
∫

−∞

f (t · (sin α,− cos α) + s · (cos α, sin α)) dt

(2.6)

A computationally efficient inversion algorithm for the two-dimensional Radon trans-
form is the so-called filtered back-projection, introducedby Feldkamp, Davis and
Kress [32]. This algorithm takes the projectionsR[f ](α, s) as input, applies a ramp
filter to them, and ‘smears’ the filtered projections back over their lines to produce an
image. According to this algorithm, the reconstructed valuef at any given location~x
can be expressed as

f(~x) =
1

4π

∫ 2π

0

p∗(α, (cos α, sin α) · ~x) dα (2.7)

wherebyp∗ denotes the ramp filtered projections.

2.4.3 Cone-beam reconstruction

In order to produce a complete and exact reconstruction fromcone-beam projections,
the trajectory of the C-arm has to satisfy the condition thatits orbit intersects with
every plane through the reconstruction space [33, 34]. These trajectories, however,
are not very practical in a clinical setting. Therefore approximating three dimensional
reconstruction techniques have been developed, using semi-circular trajectories of
at least 180◦ [35], see figure 2.7. In order to compensate for the variations in the
angular speed of the C-arm, every projectionp∗ in equation 2.7 is pre-multiplied by
a weighting factorf . This factor is obtained for a projectioni by taking the angleα
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Figure 2.7: Circular C-arm trajectory for cone beam reconstruction.

between the normal~n of the previous projectioni − 1 and the following onei + 1,
and dividing it by the overall angular range of the trajectory [36].

αi = ∠(~ni−1, ~ni+1)

fi =
αi

1
N

N
∑

i=1

αi

(2.8)

Since the late 1990s these techniques have been applied to commercial II-based C-
arm systems [36–38]. Due to the geometrical distortions andthe image signal re-
sponse properties of the II along with the limited sampling of the rotational trajectory
the 3D reconstruction was mainly limited to objects with high contrast in radiopacity,
see figure 2.8. In case of 3D imaging of the vasculature the high contrast cone beam
reconstructions are commonly called ‘three-dimensional rotational angiography (3D-
RA)’ and for reconstructions of non-vascular structures the term ‘three-dimensional
rotational X-ray (3D-RX)’ is often used.

The image intensifier suffers from a pincushion like deformation of the image,
and is also sensitive for influences from external magnetic fields (such as the earth
magnetic field). With the introduction of the flat detector these geometric defor-
mations have been resolved. The ability to image also low contrast structures has
significant clinical benefits. Bone tissues possess X-ray attenuation values up to 2000
Hounsfield units (HU), and iodine contrast medium can even reach 3000 HU. The
attenuation value for air is -1000 HU, for fat around -50 HU, for water 0 HU and for
soft-tissue around 40 HU. A fresh bleeding in the brain lies in the range from 10 to 60
HU, which means that a considerable improvement in contrastresolution is needed
to provide a meaningful image in this range. The imaging of low contrast structures
through cone beam reconstruction on flat detector C-arm systems has become avail-
able amongst others by the following improvements [39, 40]:
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(a) (b)

Figure 2.8: (a) 3D cone beam reconstruction of a brain Arteriovenous Malformations(AVM).
The blood vessels can be made visible by the intra-vascular injection of iodine contrast
medium. (b) A slice from a cone beam reconstruction, using an II based C-arm system.
The high contrast structures, such as the skull and the vasculature, filled with iodine contrast
medium, are well visible. The structures with low radiopacity, such as the soft-tissue structures
and air, contain a lot of noise.

(a) (b)

Figure 2.9: (a) Soft-tissue reconstruction of a head phantom without calibration. (b) With
calibration.

• Maintaining a constant voltage and current on the X-ray tube, and thus produc-
ing the same X-ray spectrum throughout the semi-circular movement.

• Acquiring more images (between 300 and 620 images) during the semi-circular
trajectory.

• Calibrating the flat detector; For every detector pixel the gain offset and the
linear and non-linear behavior is measured individually ina calibration proce-
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dure. During image acquisition the measured signals are corrected, using the
calibration data, see figure 2.9.

• Estimating the pixel intensity for unobstructed radiation(only traversal through
air) of the detector pixels.

• X-ray radiation does not only travel in a straight line; a fraction is scattered by
the imaged materials (such as the patient). The contribution of this scattered
radiation to the image is estimated and subtracted from the measured image.

Chapters 3 and 4 deal with the efficient visualization of (amongst others) 3D an-
giographic datasets that have been obtained by the described cone-beam reconstruc-
tion technique. The clinical applications presented in chapters 9 and 10 are based
on the registration of a pre-interventional dataset with a cone-beam reconstruction
that has been obtained peri-interventionally. Especiallythe fact that the cone-beam
reconstruction can be performed peri-interventionally with the same equipment that
is being used to perform the minimally invasive procedure isof great clinical value,
since it reliefs the patient from being transported to a CT orMR scanner and saves
valuable procedure time.



Part I

Fused Visualization
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The intra-operative setting and dynamics are very different from a diagnostic en-
vironment, which reflects on the requirements that are imposed on intra-operative
visualization. The viewer of intra-operative images is typically not sitting behind a
desktop workstation, but mostly standing at the table side were the patient lies, which
limits the possibilities to interact with the workstation considerably. Also his primary
focus is of course on the patient and the treatment course, rather than on the images.
Even though the intra-operative images are undoubtedly of the greatest importance
and very often elementary to the procedure, especially for minimally invasive treat-
ment, they are also just one of the many stimuli that are presented to the physician
during the intervention. Also of importance is the often limited time that is available
to the physician to interpret the intra-operative images, especially in stress situations.

The factors mentioned above lead to the demand for visualizations that are easy to
interpret and manipulate, without compromising on the visualization of the clinically
relevant aspects. This rules oute.g., the popular visualization methods for fused data
sets, such as side-to-side or checkerboard visualization of 2D cross-sections, since
they require too much interaction and are too time consumingto interpret. Rather a
3D visualization is needed. This is especially challengingfor fused visualizations of
multiple data sets, since the overwhelming amount of data tends to clutter the image,
making it difficult to understand at a single glance, and slows down the rendering,
which hinders the interactive manipulation.

In order to overcome these hurdles, the following sections describe fast volume
rendering (chapter 3), our approach to reach an easy to interpret fused visualization of
vascular, soft-tissue and live X-ray data (chapter 4), and the interactive visualization
of volumetric data on autostereoscopic displays (chapter 5).





Chapter 3

Fast Volume Rendering

This chapter is an extended revision of the following paper:

• Daniel Ruijters and Anna Vilanova. Optimizing GPU Volume Rendering. Journal of WSCG,
Volume 14, Number 1-3, January 2006, Pilzen (Czech Republic),pp. 9-16

3.1 Introduction

New developments in medical imaging modalities, numericalsimulations, geological
measurements,etc. lead to ever increasing sizes in volumetric data. The ability to vi-
sualize and manipulate the 3D data interactively is of greatimportance in the analysis
and interpretation of the data. The interactive visualization of such data is challeng-
ing, since the frame rate is heavily depending on the amount of data to be visualized.
Inherently, the demand for faster visualization methods isalways existing, in spite of
hardware innovations.

An established method for fast and interactive volume rendering on consumer
hardware is GPU-based texture slicing [1–8]. Although thisapproach performs very
well compared to CPU-based algorithms, due to the benefits from the parallelism
available in the GPU pipeline, it can be accelerated significantly by taking into ac-
count the various bottlenecks that are encountered in the graphics hardware. Every
individual bottleneck has a different optimal data chunk size and data throughput.
In this chapter, a novel approach to accelerate GPU-based volume rendering is pre-
sented, allowing to tailor and balance the load on the individual bottlenecks to reach
an optimal exploitation of the graphics hardware power.

3.2 Related work

The first rendering methods using the 3D texture capabilities of the graphics hard-
ware were proposed by Cullip and Neumann [3], Akeley [1] and Cabralet al. [2].
Essentially these techniques consist of drawing polygons,which slice the volume in
a back to front order. The data set is mapped as texture information on the polygons
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using tri-linear interpolation. The successive polygons are blended into the existing
image.

Bricking is a technique to divide the volume data set into chunks, called bricks [41,
42]. It can be employed to deal with data sets exceeding the available texture mem-
ory. The bricks have then a size that is equal to or smaller than the size of the texture
memory, and are loaded sequentially from main memory into the texture memory
while rendering. However, this leads to significantly lowerframe rates, since the bus
architecture, connecting the graphics hardware to the mainmemory and CPU, proves
to be a major bottleneck. Tonget al. [43] propose a bricking technique that allows
skipping empty regions. Their method, however, requires new textures to be gener-
ated for every change of the transfer function, which is timeconsuming for very large
data sets.

Texture compression can help to fit the entire volume in the main memory, and to
alleviate the bus bottleneck. However, all presently available compression methods
supported by graphics hardware (S3TC, FXT1, DXT1, VTC,etc.) are limited to lossy
8-bit RGB(α) compression, which make them unsuitable for the compression of the
(often 12- or 16-bit) scalar values found in medical data, and therefore they are not
used here. Further, Meissneret al. [6] show that the lossy compression algorithms
severely reduce the image quality. Wavelet compression, asproposed by Gutheet al.
[44] is a promising technique, but there not all parts of the volume are rendered at the
highest resolution.

Not rendering all parts of the volume in the highest resolution possible is a way
to reach higher frame rates, as demonstrated by LaMaret al. [45], Weileret al. [46],
Boadaet al. [47] and Gutheet al. [44]. This is particularly suited to increase the
render speed for perspective projections in a small view port, focusing on a detail of
the volume. However, orthogonal projections of the entire volume in high resolution
view ports, as is common in medical applications, can only profit from this technique
at the cost of the image quality.

Space-skipping and space-leaping are techniques to accelerate volume rendering,
that originate from ray-casting methods, seee.g., Levoy [9], Zuiderveldet al. [10]
and Yagel and Shi [11]. It is based on skipping empty parts of the volume. The idea
of space-skipping can be applied to texture-mapping volumerendering as has been
shown by Westermann and Sevenich [12].

The octree is an established multi-level data structure when dealing with voxel
volumes, which has been used in numerous different applications. E.g., Srinivasan
et al. [48] apply an octree structure in volume rendering. Orchard and M̈oller [49]
demonstrated the benefits of using adjacency information insplatting volume render-
ing.

Parkeret al. have combined bricking and multi-level data structures toacceler-
ate CPU-based iso-surface ray-tracing of volume data sets on multi-processor plat-
forms and clusters [50, 51]. Grimmet al. have applied a two-staged space skipping,
based on bricking and octrees, combined with gradient caching, to CPU-based ray-
casting [52].

Roettgeret al. [7] describe a GPU-based pre-integrated texture-slicingincluding
advanced lighting. The authors also describe a GPU-based ray-tracing approach with
early ray termination. Kr̈uger and Westermann [8] propose a method to accelerate
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volume rendering based on early ray termination and space-skipping in a GPU-based
ray-casting approach. The space-skipping addresses the rasterization bottleneck, us-
ing a single octree level only.

Here, some of the techniques cited above are combined to accelerate GPU volume
rendering on a single workstation, using off-the-shelf hardware. Often it is found that
acceleration of volume rendering has been treated as a singular problem to solve.
The approach presented here rather focuses on the individual bottlenecks that are
encountered while performing volume rendering, and tailorthe different techniques
to address specifically those bottlenecks.

3.3 Volume Rendering

Volume Rendering (also known as Direct Volume Rendering) isa method for visual-
izing volumetric data. The volumetric data assigns opticalproperties, such as color
and opacity, to every point in the continuous three dimensional space. The Volume
Rendering process then consists of following the traversalof rays of light through
this three dimensional space, see figure 3.1. This is done by evaluating the volume
rendering equation along the ray, as described by Kajiya [53]:

i =

∞
∫

0

c(x) · e
−

x
∫

0

τ(x′) dx′

dx (3.1)

Herei represents the resulting color of a ray,c(x) is the emitted color at locationx,
andτ(x) the light absorbtion at a particular location.

ray of light

Eye

λ x

volumescreen

Figure 3.1: An illuminated scene; a number of rays of light pass through the volume onthe
screen.

The volume rendering equation can be approximated by the following summation [5]:

i =

N
∑

n=0

(αn cn ·

n
∏

n′=0

(1 − αn′)) (3.2)

wherebyαn denotes the opacity of the volume at a given samplen, andcn the color
at the respective sample.
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This summation can be broken down inN iterations over the so-called over-
operator [54], whereby the rays are traversed in a back to front order:

Cn+1 = αn · cn + (1 − αn) · Cn (3.3)

HereCn denotes the intermediate value for a given ray. AfterN iterations,CN rep-
resents the final color of that particular ray.N should be chosen such that every voxel
is at least sampled once (we use two samples per voxel). Standard alpha blending,
offered by DirectX or OpenGL, can be used to implement the over-operator.

The summation can also be evaluated from front to back by using the under-
operator:

Cm+1 = (1 − Am) · αm · cm + Cm

Am+1 = (1 − Am) · αm + Am

(3.4)

Since the ray is traversed in the opposite direction, when comparing to the over-
operator, indexm corresponds toN −n−1 for cm andαm. Again, afterN iterations
Cm=N represents the final color of the particular ray. When neglecting discretization
issues, the over- and under-operator should deliver the same result for any given ray.
It should be noted that whenAm goes to 1, any consequentcm′ andαm′ with m′ > m
do not contribute to the ray color anymore. A ray is then said to be saturated whenAm

approximates 1. In early ray-termination, this effect is exploited to stop evaluating
samples that do not contribute to the final image, and in this way the computation
time is reduced.

Figure 3.2: Volume rendering involves the evaluation of the volume rendering equationalong
the rays, passing through the pixels of the display. The usage of texturedslices means that the
rays are not evaluated sequentially. Rather for a single slice the contributionof the sample
points to all rays is processed.

Equation (3.3) can be evaluated for all pixels in the frame buffer simultaneously,
by using a set ofN textured slices, containing the slab data, see figures 3.2 and 3.3.
In iterationn, the textured slicen is then blended into the frame buffer, under the
appropriate translation, rotation and perspective. Whereby the slices are processed
in a back-to-front order, from the perspective of the viewer. After each iteration, all
pixels in the frame buffer represent their respectiveCn+1 value.[55].
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(a) (b)

Figure 3.3: (a) A volume rendered data set, with large intervals between the textured slices.
(b) The same volume rendered data set, with a small distance between the textured slices.

3.4 Interpolation

When this method is applied to voxel data, the discrete voxel data samples have to be
mapped to a continuous optical parameter description in three dimensional space. The
optical parameters consist of a color and opacity component. The color component
c is typically expressed as a red, green and blue tuple (RGB), and the opacity as a
single valueα. There are essentially two methods for mapping the discretescalar
voxel samples to the continuous optical parameter description:

• The scalar voxel data is interpolated to a continuous scalardescription, using
some kind of interpolation function, such as nearest neighbour, linear or cubic
interpolation. Then a transfer function is applied, mapping the scalar voxel
range to optical properties,i.e., color and opacity (e.g., in the form of a lookup
table).

• The transfer function can also first be applied to the scalar discrete voxel sam-
ples. Then the interpolation to the continuous three dimensional space is per-
formed to the optical parameters.

The voxel data consist of a three dimensional array on a uniform grid containing
discrete values. The array can be regarded as a set of weighted dirac impulses, at reg-
ular intervals (the interval is constant in each direction,but might be different for each
individual axis). Shannon’s theorem states that if the original signal was bandwidth
limited, and it was sampled with at least twice the highest frequency that was present
in the original signal (Nyquist rate), it is possible to exactly reconstruct the original
signal. In order to perform such an optimal reconstruction the set of sampled data (ar-
ray of dirac impulses) has to be convolved with the sinc function (f(x) = sin(x)/x)
(see figure 3.4C). For a more in depth discussion seee.g., [56].
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Figure 3.4: One dimensional versions of the reconstruction filters: (A) the rect filter, (B) the
hat filter and (C) the sinc filter

Unfortunately a convolution with the sinc function cannot be performed on the
graphics hardware, and therefore would cost too much performance. Two convolu-
tion kernels can be used on the graphics hardware: the rect function, and the hat
function. A convolution with the rect kernel (see figure 3.4A) corresponds to near-
est neighbour interpolation, and a convolution with the hatkernel (see figure 3.4B)
corresponds to trilinear interpolation. Modern consumer graphics hardware provides
very efficient nearest neighbour, bi- and tri-linear interpolation. Tri-linear interpo-
lation provides clearly a better image quality, as figure 3.5shows. However also
tri-linear interpolation produces artefacts, since the corresponding Fourier transform
is not bandwidth limited and higher order frequencies lead to aliasing. An even bet-
ter result can be achieved using cubic interpolation [57, 58], which also can be GPU
accelerated [13, 59].

Figure 3.5: Nearest neighbour and tri-linear interpolation

3.5 Pre- versus post-lookup

When voxel data originates from techniques like MR, CT or 3D rotational angiog-
raphy, the subject of interest is typically to be found within a certain range of voxel



3.5 Pre- versus post-lookup 25

C

B

1.0

1.0

0.0

A
1.0

1.0

0.0 1.0

1.0

0.0

(a) (b) (c)

Figure 3.6: (a) Histogram and transfer function, (b) distribution of discrete values for pre-
lookup, and for (c) post-lookup

values. A transfer function could make this range visible and hide others, and thus
make the subject of interest visible. A transfer function might also enhance or sup-
press certain properties of the image (e.g., contours enhancement).

The transfer function can be performed before interpolating the volume (see sec-
tion 3.4), which is called pre-lookup, or after the interpolation, known as post-lookup.
Pre-lookup simply involves looping over all voxels and performing the transfer func-
tion for every voxel value. Post-lookup is somewhat more complicated. It means that
whenever an interpolated value is used in the volume rendering process, first the orig-
inal voxel values are taken and interpolated (usinge.g., nearest neighbour or trilinear
interpolation), and then the interpolated value is the input for the transfer function.

Figure 3.6a contains an example of a transfer function. The grey graph repre-
sents the histogram of the voxel values present in a certain volume. The solid black
line represents the transfer function. In this particular case all voxels with a value
within the range of the first part (A) are mapped to 0, for the middle part (B) a linear
lookup is performed and for the last part (C) all values are mapped to 1. Figure 3.6b
demonstrates for a pre-lookup, how the discrete dynamic range is distributed over the
middle part. Figure 3.6c shows that for a post-lookup the discrete dynamic range is
distributed over the entire range of the function (After all, in that case the transfer
function is only performed after the interpolation step). It might be obvious that if
the bit depth of the voxel data is higher than the bit depth of the transfer function, the
pre-lookup method has a richer dynamic range, meaning that it uses a bigger set of
visible voxel values. However the post-lookup method will produce more accurate
spatial results.

Why does the post-lookup method produce more accurate spatial results? Assume
a binary transfer function like in figure 3.7a. Now consider alinear interpolation
between two adjacent voxel values, one has valueA in figure 3.7a, the other has
valueB. If the pre-lookup method was used, valueA will be mapped to 0, valueB
to 1, and the linear interpolation will produce a gradual (linear) transition from 0 to 1
for the space between the voxels, as is shown in figure 3.7b top.

For the post-lookup method first a linear interpolation fromA to B will be per-
formed, and then on the interpolated values the transfer function will be applied. This
will result in a binary transition, whereby the boundary will be close to the voxel with
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Figure 3.7: (a) A binary transfer function transfer function, (b) pre-lookup (top) andpost-
lookup (bottom) interpolation between two adjacent voxel values

valueA, as depicted in figure 3.7b bottom. This is the result we wouldexpect.

(a) (b)

Figure 3.8: A volume displayed with the same transfer function using (a) the pre-lookup and
(b) the post-lookup method

As mentioned earlier, the post-lookup method is performed after interpolation. In
practice that means that post-lookup is performed in the rasterizing step in the render
pipeline (see section 3.6). The interpolation as well as thepost-interpolative transfer
function in the form of a lookup table can be easily performedby a GPU program.
Note that pre-lookup and post-lookup can be used in additionto each other.

3.6 Bottlenecks

The rendering pipeline is the general process flow that is being used to depict virtual
three dimensional scenes. Such a scene consists of flat geometrical primitives, such
as points, lines, triangles and polygons. The rendering pipeline can be implemented
in hardware to a various degree [60].
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Figure 3.9: The graphics hardware pipeline and its bottlenecks (adapted from [61]),light
grey: memory units, dark grey: data structures, blue: processing units, red: bottlenecks.

The process of rendering an image involves traversing all primitives in order to
transform their scene coordinates to camera coordinates. Alighting model is per-
formed on the primitives, and the results are stored as colorper vertex. The next
step is rasterization of the primitives. Rasterization converts the above mapped prim-
itives into fragments. Fragments correspond to pixel locations in the frame buffer,
and contain some properties such as color, texture coordinates, and depth (z buffer).
A fragment is one-to-one associated with a pixel. Before being placed into the frame
buffer, each fragment may be subjected to a series of tests and modifications. These
include stencil test, depth test, and blending. Finally, the two dimensional image that
has been rendered in the frame buffer, is displayed on the screen.

Although textures might have three dimensions (thus volumedata), the described
rendering pipeline does not allow the direct rendering of volumetric objects. All
geometrical primitives are flat. The rendering pipeline merely offers the possibility to
calculate an intersection with a flat primitive in the volumedata, using interpolation.

Figure 3.9 illustrates the graphics pipeline, employed forGPU-based volume ren-
dering [61]. Here the most important points in the pipeline that result in a bottleneck
are discussed.

The bus - The volume data has to be transferred over the bus from the system mem-
ory into the graphics card memory. Since this is the slowest part of the entire
pipeline, these transfers have to be as few as possible.

Triangle throughput - The triangle throughput is mainly limited by the vertex shad-
ing and triangle setup phase. A straight forward implementation of texture-
mapping volume rendering would involve only few triangles,but techniques
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for space-skipping may increase the amount of triangles considerably. If the tri-
angle count becomes too high, this will become a limiting factor for the frame
rate.

Rasterization - When performing volume rendering based on texture slicing, the
vast majority of the pixels on the screen are accessed multiple times. Space-
skipping techniques may be used to reduce the amount of pixels to be accessed,
but this also increases the triangle count.

Texture cache size -Texture lookup is one of the more time consuming operations
performed during the rasterization step. When the texture fits in the cache,
these lookup operations will be faster.

Fragment shader - Fragment shader programs impact the duration of the rasteriza-
tion step. Simple fragment programs, such as applying a lookup table, gen-
erally do not limit the frame rate, however more complex operations, such
as specular lighting [6, 7], multi-dimensional transfer functions [62] or pre-
integrated rendering [4, 5, 7], can form a bottleneck. Especially fragment pro-
grams that perform multiple texture lookups (e.g., on-the-fly gradient calcula-
tion for specular lighting) are relatively slow.

3.7 Method

When performing volume rendering usually only a fraction of all voxels actually con-
tribute to the final image, since a relatively small amount ofvoxels are of interest and
another amount of them are occluded. Furthermore, datasetsare often sparse. In
3D medical data sets (obtained bye.g., ultrasound, CT, MR or rotational angiogra-
phy [63, 64]) the anatomical structures of interest encapsulated in the data sets occupy
only a part of the total data. Typically 5% to 40% of all voxelscontain visible data,
and even highly filled CT or MR data sets rarely exceed 55%. Especially vascular
data sets can be marked as sparse data sets, since vessels, due to their tubular form,
occupy only a small percentage of the volume (1% to 8%).

This chapter seeks to reach the maximum benefit in exploitingskipping void parts
of the volume (space-skipping). The novelty that is introduced lies in dividing the
space-skipping in two stages; a course division using bricking (figure 3.10a) and a
finer one using octrees (figure 3.10b). These steps are based on an analysis of the
bottlenecks encountered in the graphics pipeline when performing texture-mapping
volume rendering. The first stage, bricking, is chopping thevolume in so called
texture bricks. The bricks are loaded into the video memory,to serve as data for the
volume rendering algorithm, which is executed by the GPU. The bricks address the
bus- and texture cache size-bottleneck. To further alleviate the load on the fragment
shaders, early ray termination is applied to each brick additionally. This benefits
especially highly-filled data sets. The second stage is employing an octree within each
brick. The octrees address the rasterization bottleneck. As will be demonstrated, the
two stages have to be balanced, because lifting one bottleneck may overload another
bottleneck (e.g., rasterization bottleneck versus triangle throughput bottleneck).
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(a) (b) (c)

Figure 3.10: The same volume fragment, rendered with (a) bricking cubes visible, (b)octree
cubes visible (note the various cube sizes) and (c) both bricking and octree cubes visible.

The role of the transfer function in volume rendering is to map the scalar voxel in-
formation to the optical properties (i.e., color and opacity) [62]. The above described
approach is implemented such that the flexibility to change the transfer function at
run-time is preserved. This offers the possibility to focuson different scalar ranges in
the volume, without lengthy calculations. To accomplish this, the unmodified scalar
voxel values are stored in the brick textures, and a fragmentshader program is used,
to lookup the RGBα values after interpolation of the scalar voxel values has been per-
formed. Since the octrees depend on the visibility of the data, and thus on the transfer
function, they have to be recomputed when the transfer function changes. This can
be done on the fly, as will be explained below.

3.8 Bricking

As mentioned in section 3.2, the voxel volume can be divided into chunks, called
bricks, in order to cope with voxel data sets sizes exceedingthe size of the texture
memory of the graphics hardware. Note that these bricks contain the original scalar
values of the voxel volume, thus the values before applying the transfer function. This
enables us to change the transfer function on the fly, since a transfer function change
does not require creating new textures.

To obtain a correct interpolation at the bricks’ boundariesit is necessary that
the data held by adjacent bricks overlap. The overlap depends on the convolution
kernel used for interpolation [57], and should correspond to (kernelsize − 1). For
nearest neighbor interpolation that means that no overlap is needed, since the width
of the kernel is one. For tri-linear interpolation the overlap should be one voxel in
every direction (for other kernels the overlap may even be larger). Pre-integrated
rendering [4, 5, 7] or the on-the-fly calculation of gradients require the overlap to be
increased by another voxel in every direction. For bricks ofb3 voxels and an overlap
of n voxels, the memory overhead is approximately(3n/b) · 100%.

The bricks are loaded into the video memory as 3D textures. Many graphics
cards require 3D texture sizes to be a power of 2 in every direction. If the volume
dimensions do not divide evenly into brick dimensions, either an additional layer of
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partially empty bricks should be added in each direction, orsmaller rest-bricks should
be used.

When the amount of data in the textures exceeds the available texture memory,
textures are swapped between the main memory and the texturememory. If a re-
quested brick is not resident in the texture memory, it is loaded from the main mem-
ory, replacing resident textures [60]. In most OpenGL implementations resident tex-
tures are swapped out on a Least Recently Used (LRU) base.

Traditionally bricking in texture based rendering is used to be able to render data
sets which exceed the size of the texture memory of the graphics hardware. The
bricks are then chosen to be as large as possible, and they aresequentially loaded
from the main memory into the texture memory. This implies that for each frame the
entire volume data is transferred over the bus.

In the presented approach, however, considerably smaller brick sizes are chosen.
The smaller the brick size is, the bigger is the chance of bricks being completely
void after applying the transfer function, and void bricks do not need to be drawn.
Therefore, once they are swapped out of the texture memory, they are never reloaded
into the texture memory, and thus the bus bottleneck is alleviated.

Bricking is even applied to volumes that completely fit into the texture mem-
ory to improve data locality, which will result in less cachetrashing on the graphics
card [65–67]. On the other hand smaller bricks could introduce a larger overhead
due to the overlap needed for interpolation. Thus the optimal brick size needs to be
defined depending on the available texture memory, optimal texture size (see section
3.6), nature of the data set, overhead due to overlap, and theconstraints posed by the
graphics hardware.

3.9 Early ray termination

To be able to perform early ray termination at all, the volumehas to be traversed in a
front-to-back order. This can be done by evaluating the volume rendering integral in
discrete steps, using the under operator, see equation 3.4.

Before a brick is rendered, early ray termination is appliedto its destination pix-
els. This is tested by executing a fragment shader program, while drawing a solid
bounding box around the brick with back face culling switched on. The fragment
shader program writes the maximal value in the depth buffer for saturated rays [7, 8].
When slicing the brick texture the early z-test will prevent any fragment operations
to be executed for those rays, reducing the load on the rasterization and fragment
shader bottlenecks. Early ray termination is only performed once per brick, and not
more often (e.g., for every octree node or every sample) because the overheadin-
volved (changing fragment shaders, performing the test) would otherwise annihilate
the benefits.
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3.10 Octree

By not rendering the void bricks, the load on the rasterization bottleneck is already
reduced. The load is even further reduced by applying octrees. Every brick pos-
sesses its own octree. Every octree node corresponds to a cuboid part of the voxel
volume, which can be divided into eight parts, corresponding to the child nodes (see
figure 3.11). The octree is kept in main memory. It only describes the geometry of
the visible data. The actual voxel data is to be found in the brick textures.

level 1

level 0

level 2

Figure 3.11: An octree division, and its tree

For tri-linear interpolation, let a cell be defined as a cube with adjacent voxel
values assigned to its eight corners. For every position within the cell an intensity
value is defined as the tri-linear interpolation of the corner values. Therefore a cell
can only be completely void if its eight corner values are completely transparent
(α = 0) after applying the transfer function. This definition can easily be extended
to any given interpolation kernel, by setting the size of a cell to (kernelsize − 1)3.

Every octree node carries a variable describing the ratio r of visible data to total
data within its cube. At the final level of the octree, every node represents uniquely
one cell, and is considered either completely filled(r = 1) or void (r = 0). Every
higher octree level nodes ratio can be calculated by averaging the ratios of its children.
This calculation only needs to be performed when the transfer function has changed.

Rendering an image means that the bricks have to be processedin a front to back
order. For each brick the respective octree is traversed, starting with its parent node.
Depending on its ratio r there are three ways to process a node:

r = 0: The node is completely void. It is not drawn at all, and is not traversed any
further.

0 < r < threshold: The nodes children will be traversed, and to each child node
this strategy will be applied recursively.

r ≥ threshold: The node is drawn completely. It is not traversed any further.

If the threshold is set to 1, exactly all filled cells will be drawn, and no void cells.
However, that would lead to a lot of tiny cubes at the boundaries of the visible data
structures, and thus the load on the triangle throughput bottleneck becomes too high.
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Therefore a lowerthreshold should be chosen to allow some degree of void data to
be drawn.

Further, an octree levell is specified at which nodes lower in the hierarchy are
not traversed anymore. At this level, any node that is not void will be drawn com-
pletely. This strategy is applied to prevent that the overhead of traversing the octree
completely down to the leaves becomes bigger than the time that is won by skipping
the empty parts. Additionally, this approach enables us to update the octree on the
fly, when the transfer function changes. The octrees nodes atlevel l contain the min-
imum and maximum voxel value that is represented by the voxelsamples in their
corresponding cubes. This is constant data, independent from the transfer function.
When the transfer function changes, only the visibility of the octree nodes higher than
level l needs to be computed again. However, this set of nodes is onlya fraction of
the amount of voxels, and therefore this recalculation can be performed very quickly.

When traversing a node, its children have to be sorted in a front to back order.
Since there are eight children, it would seem that there are8! = 40320 ways to
arrange the children. But since the arrangement along the three perpendicular axes
is the same for all children, there remain23 = 8 possible orders. When a node
is to be drawn, the cuboid box corresponding to this node is sliced, and the slices
are rasterized and blended into the previously drawn slices. The slices can be axis-
aligned or viewport-aligned. For the most straight-forward form of volume rendering,
the brick texture is interpolated on every slice, taking itsposition in the brick into
account, and after interpolation the transfer function is applied. However, it is also
possible to perform more sophisticated forms of volume rendering on the slices, like
pre-integrated volume rendering or include specular lighting [6, 7].

The octree is generated and traversed on the CPU. Its purposeis to lower the
workload on the graphics pipeline, and thus the GPU. The octree reduces the time
that the GPU spends on processing data which never contribute to the final image.
The actual volume rendering algorithm, as well as interpolation, the post-interpolative
transfer function, and optionally, specular lighting, is being performed by the GPU.

3.11 Results

The described approaches have been tested with several different graphics cards: the
nVidia QuadroFX 3400 (256MB on board memory), the ATi FireGLX1 (128MB),
and the 3DLabsWildcat 7110 (256MB). With each card the volume in figure 3.12b
has been rendered, using the same lookup table settings. Thevolume data concerned
the iliac arteries, acquired through 3D rotational angiography. Since contrast media
was injected into the vessels, the vessels could easily be classified using the transfer
function. Only 3% of the voxels in this volume contain visible data. All results have
been obtained using a view port of8002 pixels and the sample rate for the volume
rendering equation was set to 1.5 samples per voxel.

Since the optimal brick size is mainly determined by the properties of the texture
memory (see section 3.8) and the optimal octree limit is primarily used to balance the
rasterization load and the triangle throughput (see sections 3.6 and 3.10) they can be
considered to be fairly orthogonal variables. Therefore their optimum can be found
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(a) (b) (c)

Figure 3.12: Test volumes: (a)5123 volume, used for testing early ray termination, (b) vascu-
lar 5123 volume, (c) gigabyte volume of642× 642× 1284 voxels, generated by duplicating a
large 3D-RA volume.

by varying one variable, while keeping the other one constant.
On each graphics card the test volume was rendered with different brick sizes,

see figure 3.13, while the octree limit was set to83 voxels. The ATi FireGL X1 and
the 3DLabs Wildcat 7110 clearly show that their optimal brick size is considerably
smaller than their largest possible brick size. The nVidia QuadroFX 3400 does not
benefit from the bricking for the 256MB test volume. However,also this card clearly
profits from the bricking for the sparse 1GB volume in figure 3.12c: the optimal brick
size is then643 voxels, with an average frame rate of 37 fps, while for2563 bricks
only a mere 3.1 fps is reached.

0
 20
 40
 60
 80
 100


Wildcat 7110


Radeon 9000

Mobility


FireGL X1, non xy

aligned


FireGL X1, xy

aligned


QuadroFX 1000


QuadroFX 3000


QuadroFX 3400


16³


32³


64³


128³


256³


512³


fps


brick 

sizes


Figure 3.13: Performance using different brick sizes.

The performance of the ATi FireGL X1 depends heavily on the sampling direction
of the bricks, because the ATi card treats the 3D textures as astack of 2D slices. When
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the bricks are traversed in the x or y direction, the slices are accessed rather linear,
and the performance is much better than when they are traversed in the z direction.
It is inevitable to traverse in the z direction, when the viewing direction and the z-
axis of the textures differ more than45◦. This effect can be reduced by alternating
the orientation of the textures for each consecutive brick [42]. Especially striking
is the fact that the optimal brick size and octree limit is different for each sampling
direction. When sampled in the xy-plane direction larger bricks benefit from linear
traversal, while in other directions smaller bricks benefitfrom less cache trashing. In
figures 3.13 and 3.14 this fact is illustrated by the performance measurement when
sampling was aligned to the xy-plane, and when not.
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Figure 3.14: Performance using different octree limits.

Further, the volume was rendered with a fixed brick size of643 voxels and vari-
able octree limits (the octree limit is the smallest octree cube allowed). Not every
octree branch reaches this limit, see section 3.10. Figure 3.14 unsurprisingly shows
that there is an optimum octree size for every graphics card.Smaller octree limits
lead to too much CPU overhead and triangle count, and larger octrees to too much
rasterization overhead. The643 octree level corresponds to not using any octrees at
all, only bricking.

Table 3.1 shows the acceleration achieved, using the volumein figure 3.12b, with
an optimal combination of brick size and octree depth for each particular graphics
card versus the same GPU volume rendering routines applied without any bricking or
octrees at all. Since early ray termination does not provideany performance gain for
sparse data sets, it was not used on this volume.

Early ray termination was tested on the QuadroFX 3400 using the volume in
figure 3.12a. GPU volume rendering without optimizations yielded 2.2 fps, using
643 bricks and83 octree limits 5.2 fps were reached, and with additionally early ray
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Graphics card a Optimized b Non-optimized a/b

nVidia QuadroFX 3000 AGP 25.5 fps 2.2 fps 11.6
nVidia QuadroFX 3400 PCIx 73.5 fps 9.6 fps 7.66
ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362
ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119
ATi Radeon 9000 mobility 9.35 fps 0.26 fps 36.0
3DLabs Wildcat 7110 21.3 fps 0.38 fps 56.1

Table 3.1: Average frame rates reached when using (a) best combination of bricking and
octrees, (b) GPU rendering without bricking or octrees.

termination switched on, the average frame rate was 16.1 fps.
Since the rendering primarily depends on the graphics card,replacinge.g., a Xeon

3.0GHz by a Xeon 1.7GHz delivered approximately the same performance figures.
The only part which is bounded by the CPU and main memory performance is build-
ing a new octree after the transfer function has been changed. For a volume consisting
of 5123 voxels (16 bit per voxel, 256MB for the entire volume), rendered with a brick
size of643 voxels and an octree limit of83 voxels, building all new octrees for the
entire5123 volume took 6.5 milliseconds on the Xeon 1.7GHz and 3.5 milliseconds
on the Xeon 3.0GHz machine.

3.12 Conclusions

In this chapter, an approach to accelerate GPU-based volumerendering was pre-
sented. The approach consisted of a two staged space-skipping and early ray ter-
mination, and was tailored to lift the various bottlenecks encountered in the graphics
pipeline.

In the first stage, the entire volume is chopped into bricks, and from these bricks
3D textures are created. Empty bricks are never drawn, nor kept in the video memory,
and therefore the bus bottleneck is relieved. The optimal brick size depends on the
nature of the data (there should be a reasonable chance that there are bricks which are
completely void), the available texture memory, the texture cache size and the over-
head introduced by brick overlap. Since the brick textures content does not depend
on the transfer function, they need to be created only once for static data.

The octrees, which form the second stage, focus on skipping data that is not vis-
ible after applying the transfer function. In this way the rasterization bottleneck is
addressed. To prevent too much overhead to be introduced, a certain amount of void
data per octree box is allowed, and there is a limit to the granularity of the octree
boxes. The optimal octree parameters are determined by the weight of the rasteriza-
tion phase (i.e., are there complex fragment shader programs involved,etc.) and the
trade-off between less rasterization operations and more triangles (triangle throughput
bottleneck). Since the octree depends on the transfer function, it has to be recalculated
when the transfer function changes.
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In this chapter it has been shown how the individual bottlenecks have been ad-
dressed by a two-folded approach. First the bus bottleneck and texture cache size has
been addressed by bricking, and consequently the rasterization bottleneck has been
addressed by the octrees. The rasterization and fragment shader bottleneck were fur-
ther lifted by employing early ray termination. The resultsshow that the parameters
can be optimized for different graphics cards. Since the transfer function only leads to
recalculating the octrees, and not reloading the bricks, itcan also be changed quickly
and interactively.

The graphics industry are introducing more powerful hardware at an impressive
pace. However developments in medical imaging modalities are equally impressive,
resulting in larger volume data sets. Which means that in the foreseeable future the
techniques that were presented here will preserve their benefits.



Chapter 4

Fusion of Vascular, Soft-tissue
and X-ray data

This chapter is based on the following papers:

• Daniel Ruijters, Drazenko Babic, Bart M. ter Haar Romeny, andPaul Suetens. Silhouette Fusion
of Vascular and Anatomical Data.Poceedings of IEEE International Symposium on Biomedi-
cal Imaging: From Nano to Macro (ISBI’06),April 2006, Washington DC (USA), pp. 121-124.
doi:10.1109/ISBI.2006.1624867

• Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mielekamp, Bart M. ter Haar Romeny,
and Paul Suetens. 3D Multi-modality Roadmapping in Neuroangiography.Proceedings of SPIE
- Volume 6509, Medical Imaging 2007: Visualization and Image-Guided Procedures,February
2007, San Diego (USA), pp. 65091F. doi:10.1117/12.708474

• Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mielekamp, Bart M. ter Haar Romeny, and
Paul Suetens. Real-time integration of 3-D multimodality datain interventional neuroangiography.
Journal of Electronic Imaging,Volume 18, Issue 3, July-September 2009.
doi:10.1117/1.3222939

4.1 Introduction

In this chapter it is described how data coming from multiplemodalities can be rep-
resented in a single fused image. We apply the fusion to vessels that were segmented
from a 3DRA acquisition and soft-tissue information in a voxel dataset, which typi-
cally originates from a CT or MR scan. The live 2D X-ray fluoroscopy video stream
is merged into this combined bi-modal representation. Taking into account the intra-
procedural usage of this visualization, we aim at creating an image that can be ren-
dered in real-time and is easy to interpret, while containing all important clinical
aspects of the rendered data. The described techniques are not restricted to this par-
ticular application or modalities, though, but can also be applied in other situations.

Image fusion is the domain of combining two (or more) datasets in a combined
visualization. In the state of the art, regarding the fusionof volumetric datasets, two
classes of algorithms can be distinguished:

3D Compositing, whereby structures further from the viewer are obscured by closer
ones. This includes surface rendering techniques, such as iso-surface rendering
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[68] and mesh rendering [69], as well as direct volume rendering of multiple
datasets [70–74] and combining surface and volume rendering [75–77]. The
advantage of this class of algorithms is the fact that the spatial relationship and
topology between the datasets is very clear. Obscured structures can be made
visible by using a high level of transparency, though this tends to clutter the
resulting image with information. Another way to visualizeobscured structures
is hiding a part of one of the datasets,e.g., by using clip planes or clipping
volumes.

Overlaying is the other class, whereby selected internal structures influence the re-
sulting image, regardless whether they are obscured. In itssimplest form this
means that the resulting image is composed of the combination of the separate
2D projection of both datasets [78], usinge.g., blending, but also the combina-
tion of volume rendering techniques with Maximum IntensityProjection [79]
can be considered to be a member of this class. The benefit of this method is
the fact that no (relevant) information is hidden because ofocclusion. On the
downside, however, the representation of the topology of the data sets is lost.

We intend to use the best of both classes, by combining them ina hybrid approach,
without cluttering the result with an overload of data, and thus yielding an image that
is easy to interpret. Our fused visualization is achieved bypresenting a subset of the
soft-tissue dataset and the live fluoroscopy data in a singleimage. In order to obtain
such an image, a soft-tissue dataset (e.g., a CT or MR dataset) is registered with a
3DRA reconstruction, see chapter 6. Such a representation allows a direct correlation
of the position of the live data in the fluoroscopic video stream and the multiple 3D
datasets. The fast visualization, achieved by using off-the-shelf graphics hardware, is
an integral part of the method.

4.2 Method

4.2.1 Volume and mesh blending

In order to render a fused image, first the triangulated mesh,representing the vessels,
is rendered in the frame buffer. Simultaneously the depths of the triangles are written
in the z-buffer. Consequently, a slab out of the voxel dataset is mixed into the scene
using direct volume rendering. The position, orientation and thickness of the slab
can be altered by the user. The slab is rendered by evaluatingthe direct volume
rendering equation for each pixel in the view port. To mix thetriangulated mesh and
the direct volume rendering, we test the z-buffer at each iteration of the over operator
(equation 3.3). If the z-buffer test shows that, for a particular pixel, the position of
the present sample of the ray is further away from the viewer than the triangle in the
frame buffer, the frame buffer remains unchanged. The first sample that lies closer to
the viewer will take the present value of the frame buffer as input, which was written
by rendering the triangulated mesh, see figure 4.1. In this way the color of the mesh
is blended into the volume rendering equation at the appropriate place. An example
of such a blended image can be found in figure 4.5b.
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(a) (b)

Figure 4.1: (a) To fuse meshes and voxel data, first the mesh is rendered to the frame and
z-buffer. (b) Then the volume rendering equation 3.2 is evaluated by drawing textured slices in
a back-to-front order. As long as the slice information lies behind the mesh,the z-buffer test
will prevent the mesh pixels to be overwritten. When the slices are in front ofa mesh pixel, the
mesh color will be fed into the volume rendering equation.

The mesh, representing the vessels that were segmented froman intra-operative
3DRA dataset, and the soft-tissue MR or CT data will typically not be contained
in the same coordinate space. The framework presented in appendix A can be ap-
plied directly during the visualization of the mesh and textured slices, which makes a
resampling of the slab with the soft-tissue data to the grid of the 3DRA data unnec-
essary, leading to a better image quality [70].

4.2.2 Silhouette overlaying

In order to show relevant internal structures that are occluded by the volume rendered
data, we optionally overlay this data with the silhouette ofthe mesh. The silhouette
only shows the outline of the mesh structures, and thereforeit barely obscures any
previously rendered parts of the image. On the other side it indicates the shape of
the occluded mesh. Furthermore, the interface of the occluded and visible part of the
mesh allow to locate the silhouette within the 3D scene. An example of this silhouette
rendering is presented in figure 4.2.

The silhouette render technique we apply is based on the method described by
Raskar and Cohen [80]. In order to render a silhouette, first the front faces (triangles
with a normal pointing to the viewer) of the mesh are renderedto the z-buffer only.
This can be achieved by drawing the triangles with a completely transparent color,
or by switching the color mask off. Consequently the wire frame of the back faces
(triangles with a normal pointing away from the viewer) of the mesh are rendered,
but this time with a solid color (red in our case), a line thickness larger than 1 pixel
(2 pixels in our case), and z-test enabled.

This process will lead to lines only being drawn where the front facing and back
facing triangles meet, and thus to a silhouette of the mesh. Again the whole silhouette
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Figure 4.2: The silhouette rendering allows to visualize the occluded part of a scene and to
present the relation with the contextual data, without cluttering the image. Topimage: cerebral
vessels, segmented from the 3D-RA dataset. Middle image: the cerebral vessels, combined with
a volume rendered slab out of a MR dataset, which obscures the aneurysm. Bottom image: the
segmented vessels and MR slab, overlaid with the silhouette of the vessels.



4.2 Method 41

rendering can be easily implemented to employ the graphics hardware using either the
DirectX or OpenGL API.

4.2.3 Blending with the 2D X-ray image

For the interpretation of the fused image it is beneficial to process parts of the X-
ray fluoroscopy data differently, depending on their underlying 3D information. In
order to achieve this, it is necessary to establish which kind of 3D data is contained
in each pixel. Here this information is obtained by employing the stencil buffer (for
a description of the stencil buffer, see [60]). For every pixel in the frame buffer that
is filled by the mesh, a constant valueS1 is written to the stencil buffer. Also while
rendering the voxel data slab, a stencil buffer operation isdefined to write a constant
S2 to every pixel that receives a color value from the direct volume rendering process,
with α > 0. The S1 labels can be overwritten byS2 during this operation, see
figure 4.3.

(a) (b)

Figure 4.3: (a) The mesh and the voxel slab write different values to the stencil buffer. (b) The
stencil buffer can then be applied to process the fluoroscopy image during rendering.

Finally the current fluoroscopy image is blended into the frame buffer, which is
done in multiple passes. The action that is performed on a given pixel in a certain
pass, is determined by the value in the stencil buffer.S1 in the stencil buffer means
that the vessel tree is depicted in that pixel,S2 corresponds to the soft-tissue data.
If the stencil buffer is empty at a certain pixel position, then that particular pixel
has not been filled with any information yet (background). Since theS1, S2 and
empty regions are addressed individually, different blending and image processing
operations can be performed to these regions (compare figures 4.4a and 4.4b). For
instance, a spatial sharpening to enhance small details, and a temporal smoothing to
reduce noise can be applied to the vessel region.

The fluoroscopy data that overlays the background, can contain some anatomical
landmarks, which are relevant to the physician. The most important part of the fluo-
roscopy image, though, is to be found inside the vessel region, since the movement
of the endovascular devices is supposed to be contained within this region. This hi-
erarchy is reflected in the intensity and filtering of the fluoroscopy data stream. The
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(a) (b)

Figure 4.4: (a) In the first fluoroscopy overlay pass, the pixels that are labeledS1 (vessel) in
the stencil buffer, are treated. In this case, a sharpening filter was applied to the fluoroscopy
data, before they were blended with the frame buffer content. (b) In the second pass, the pixels
that were labeled as background in the stencil buffer, are processed.The fluoroscopy data is
written without being sharpened, and the intensity is reduced.

fluoroscopic information that overlays the soft-tissue slab could be suppressed, to
reduce cluttering of information in this region.

4.3 Results and discussion

The augmented visualization, consisting of a mesh extracted from a2563 voxel 3DRA
dataset, a Volume Rendered slab from a2562 · 198 voxel CT dataset and the fluo-
roscopy image stream, can be displayed at an average frame rate of 38 frames per
second. All figures were measured on a Xeon 3.6 GHz machine with 2 GB of mem-
ory, and an nVidia QuadroFX 3400 graphics card with 256 MB of memory, using the
datasets that are depicted in figure 4.5.

The benefit of the described method is the fact that it allows to visualize multi-
ple partially overlapping datasets in a single fused image,while still preserving an
easy interpretation of the data topology, morphology and the relations between the
different datasets. Especially during clinical interventions it is very important that the
information conveyed by the image can be understood at a single glance. By using
the capabilities of the GPU and the efficient volume rendering techniques introduced
in chapter 3, the fused visualization can be rendered at interactive frame rates, which
is particularly important when real-time data is part of thefused image.

The main restriction of the fusing technique is the limitation of blending a single
opaque mesh with a single volume rendered dataset. Brecheisenet al. [77] describe a
powerful application of depth peeling to combine multiple volume rendered datasets,
together with polygon surfaces (i.e., meshes) and clipping volumes. However, how
to combine this approach with the bricking and octrees of chapter 3 is currently an
unsolved question. The absence of these accelerating techniques, together with the
overhead introduced by the depth peeling presently still lead to frame rates that are
unattractive for usage during clinical interventions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: (a) A CT image, clearly showing a tumor, (b) The CT dataset, registered with
the 3DRA dataset, (c) a single frame from the fluoroscopy image stream, (d) the fluoroscopy
image mixed with the vessel tree from the 3DRA dataset, (e) the fluoroscopyimage, the 3DRA
vasculature and a slab from the CT data, (f) the fluoroscopy image outside the 3DRA vessel
tree is darkened.





Chapter 5

Autostereoscopic visualization

This chapter is an extended revision of the following papers:

• Daniel Ruijters. Integrating Autostereoscopic Multi-View Lenticular Displays in Minimally In-
vasive Angiography.In Proc. MICCAI 2008 workshop on Augmented Environments forMedical
Imaging and Computer-Aided Surgery (AMI-ARCS),September 10, 2008, New York (USA), pp.
87-94

• Daniel Ruijters. Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic
Multiview Lenticular Displays. EURASIP Journal on Advances in Signal Processing,Volume
2009, Article ID 843753, 8 pages, 2009. doi:10.1155/2009/843753

5.1 Introduction

Stereoscopic images present a view on a 3D scene that adds a sensation of depth by
showing slightly different images to the left and right eye of an observer. The addi-
tional depth impression enables a natural interpretation of the 3D data. Principally
there are two approaches for conveying a stereoscopic image: time multiplexing and
spatial multiplexing of two or more views.Autostereoscopic displays allow a stereo-
scopic view of a 3D scene without the use of any additional external aids, such as
goggles. Though two views are enough to create the impression of depth (after all,
we have only two eyes), offering more views has the advantagethat the viewer is not
restricted to a fixed sweet spot, since there is a range of positions where the viewer
will be presented with a stereoscopic visualization. As a consequence, multiple view-
ers can look at the same stereoscopic screen, without wearing goggles. Furthermore
it is possible to ‘look around’ an object, when moving withinthe stereoscopic range,
which aids the depth perception.

Multiview autostereoscopic displays can be regarded as three-dimensional light
field displays [81, 82] (or four-dimensional, when also considering time). The dimen-
sions are described by the parameters(x, y, φ), wherebyx andy indicate a position
on the screen andφ indicates the angle in the horizontal plane in which the light is
emitted. The light is further characterized by its intensity and its color.

Present technological solutions to autostereoscopic displaying typically use either
lenticular lenses or parallax barriers to achieve the stereoscopic effect. The parallax
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barriers displays use a grid that is placed at a small distance from the screen pixels,
and blocks a different set of pixels when viewed from a different direction. The mul-
tiview lenticular display uses a sheet of lenses to spatially multiplex the views [83],
and typically offers four to fifteen spatially sequential images. The advantage of the
lenticular technique over the parallax barriers approach is the fact that all light pro-
duced by the screen is also emitted.

In this chapter we examine the autostereoscopic display in the context of med-
ical applications. Especially during clinical interventions, interactive manipulation
and high resolution visualization of medical data are two important and sometimes
conflicting requirements. We discuss the properties of the lenticular autostereoscopic
display with respect to perceived resolution, and we explore a dynamic balancing of
interactive frame rates and highest possible resolution indirect volume rendered data.

5.2 State of the art

In 1838 Sir Charles Wheatstone developed a device, called thestereoscope, which al-
lowed the left and the right eye to be presented with a different image (illustration or
photograph), in order to create an impression of depth. Matusik and Pfister [84] pre-
sented a comprehensive overview of the various systems for stereoscopic visualiza-
tions, that have been developed over the time. The development of autostereoscopic
display devices, presenting stereoscopic images without the use of glasses, goggles
or other viewing aids has seen an increasing interest since the 1990s [85–87].

The advancement of large high resolution LCD grids, with sufficient brightness
and contrast, has brought high quality multiview autostereoscopic lenticular displays
within reach [88]. A number of publications have investigated the image quality as-
pects of autostereoscopic displays. Seuntiënset al. [89] have discussed the perception
quality of lenticular displays as a function of white noise.Konrad and Agniel [90]
describe the Fourier domain properties of the lenticular display, and they propose a
pre-filtered sample approach. The effect of light that oughtto be contributed to one
particular view leaking into other views, which is called crosstalk, has been quantita-
tively investigated by Braspenninget al. [91] and Boevet al. [92].

The range of viewing positions, allowing the perception of astereoscopic im-
age, is mainly determined by the number of views offered by the display. Further, a
higher resolution per view leads to less artifacts and improves the image quality. The
required resolution of the LCD pixel grid can be establishedas the number of views
times the resolution per view. Clearly, fulfilling both requirements demands very high
resolution LCD pixel grids, which means that an enormous amount of pixel data has
to be rendered and transferred to the display.

Several publications describe how the GPU can be employed toextract the data
stream for the lenticular display from a 3D scene in an effective manner. Kooimaet
al. [93] present a two-pass GPU based algorithm for two-view head-tracked parallax
barrier display. First the views for the left and the right eye are rendered, and in
the subsequent pass they are interweaved. Domonkoset al. [94] describe a two-
pass approach, dedicated for iso-surface rendering. In thefirst pass they perform
the geometry calculations on the pixel-shader for every individual pixel, and in the
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second pass the shading is performed. Hübner and Pajarola [95] describe a GPU-
based single-pass multiview volume rendering, varying thedirection of the cast rays
depending on their location on the lenticular screen.

The previous GPU-based approaches were dedicated render methods, working
on the native resolution of the lenticular LCD grid. We present an approach that
decouples the render resolution from the native LCD grid resolution, allowing lower
resolutions, when higher frame rates are demanded.

5.3 The multiview lenticular display

The multiview lenticular display device consists of a sheetof cylindrical lenses (lentic-
ulars) placed on top of an LCD in such a way that the LCD image plane is located at
the focal plane of the lenses [96]. The effect of this arrangement is that LCD pixels
located at different positions underneath the lenticularsfill the lenses when viewed
from different directions, see figure 5.1. Provided that these pixels are loaded with
suitable stereo information, a 3D stereo effect is obtained, in which the left and right
eye see different, but matching information. The screen we used offered nine distinct
angular views, but our method is applicable to any number of views.

Figure 5.1: The light of the sub-pixels is directed into different directions by the sheet of
lenticular lenses.

The fact that the different LCD pixels are assigned to different views (spatial mul-
tiplex), leads to a lower resolution per view than the resolution of the LCD grid [97].
In order to distribute this reduction of resolution over thehorizontal and vertical axis,
the lenticular cylindrical lenses are not placed vertically and parallel to the LCD col-
umn, but slanted at a small angle [83]. The resulting assignment of a set of LCD
pixels, which is specified by the manufacturer, is illustrated in figure 5.2. Note that
the red, green and blue color channels of a single pixel are depicted in different views.
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Figure 5.2: The cylindrical lenses depict every sub-pixel in a different view. The numbers in
the sub-pixels indicate in which view they are visible.

5.4 The different angular views

We propose a two pass algorithm: First the individual views from the different foci
positions are separately rendered to an orthogonal grid. Inthe second pass, the final
output signal has to be resampled from the views to a non-orthogonal grid in the
compositing phase (see figure 5.3). The processing power of the GPU is harvested
for both passes. In order to maintain an acceptable frame rate, the resolution of the
views can be changed dynamically.

Volume Rendering
Projection matrix
view 1

Projection matrix
view 2

Projection matrix
view n

Compositing Display

Volume Rendering

Volume Rendering

Figure 5.3: The process of rendering for the lenticular display. Optionally, the rendering of
then individual views can be done in parallel.

The frustums that result from the different focal spots, areillustrated in figure 5.4.
The viewing directions of the frustums are not parallel to the normal of the screen,
except for the center one. Therefore the corresponding frustums are asymmetric [98].
A world coordinate(x, y, z) that is perspectively projected, using such an asymmetric
frustum, leads to the following view port coordinatev(x, y):

v(x, y) =

(

(x − n · d) · f

f − z
+ n · d,

y · f

f − z

)

(5.1)
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Figure 5.4: The frustums resulting from three different view points.

 
 

Figure 5.5: The same scene rendered from the most left and most right view point.

Wherebyf denotes the focal distance,n the view number andd the distance be-
tween the view cameras. All parameters should be expressed in the same metric (e.g.,
millimeters), and the origin is placed in the center of the view port.

Figures 5.4 and 5.5 illustrate the process of rendering the scene from focal spot
positions with an offset to the center of the screen. After the projection matrix has
been established based on equation 5.1, the scene has to be rendered for that particular
view, using the techniques from chapter 3. All views are stored in a single texture,
which we calltexture1. In OpenGL, the views can be placed next to each other in
horizontal direction, using theglViewport command. The location of a pixel in
view n in texture1can be found as follows:

~t =

(

1

2
+

n

Ñ
+

2px − 1

2Ñ
, py

)

(5.2)

whereby~t denotes the normalized texture coordinate,~p the normalized pixel coor-
dinate within the view, and̃N the total number of views. The view indexn is here
assumed to be in the range

[

− Ñ−1
2 , Ñ−1

2

]

, as is used ine.g., figure 5.2.

5.5 Resolution considerations

The maximum information density that can be conveyed by the lenticular display per
view, is determined by the way the pixels of the LCD grid are refracted by the lenticu-



50 Autostereoscopic visualization

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Figure 5.6: A lattice (black dots) and corresponding Voronoi cells (red). The green vectors
compose a possible basisV for this lattice. The Voronoi cell of a given lattice point is the set
of points inR

N that are closer to this particular lattice point than to any other lattice point.

lar lenses. In modern lenticular displays, the lens array isslanted under a slight angle,
which affects the distribution of the set of pixels that are diverted to a particular view-
ing angle. In figure 5.7a it is shown how the green sub-pixels,visible from the middle
viewing position (view 0), are distributed over the LCD grid. Though the allocation
of the sub-pixels over the grid is regular, it is not orthogonal. The sampling theory
of multidimensional signals, described by Dubois [99], canbe used to examine the
frequency range that can be transmitted by a certain non-orthogonal grid. Especially
the maximum view port size that does not lead to aliasing is ofinterest. When the
resolution of the view port is too high, the compositing undersamples the view, and
aliasing occurs. Though such views can be low-pass filtered to prevent aliasing, it is
preferable to render them immediately at the optimal resolution, in order to keep the
load on the scarce processing resources as low as possible.

The set of sub-pixels that are refracted to the same angular view can be consid-
ered to form a lattice. Let the vectors{~v1, ~v2, ..., ~vN} form a basis, not necessarily
orthogonal, ofRN . ThenlatticeΛ ⊂ R

N is defined as a set of discrete points inR
N ,

formed by all linear combinations of vectors~v1, ~v2, ..., ~vN with integer coefficients.
In order to perform a Fourier transform of a signal, sampled on a lattice, the re-

ciprocal lattice is required. Thereciprocal latticeΛ∗ of lattice Λ is defined as the
set of vectors~y, such that~y · ~x is an integer for all~x ∈ Λ. Let V be the matrix,
whose columns are the representation of the basis vectors~v1, ~v2, ..., ~vN in the stan-
dard orthonormal basis forRN . Then matrixW , containing the basis vectors of the
reciprocal latticeΛ∗, is determined byWT V = I, with I being theN · N identity
matrix.

The Voronoi cellof a lattice is defined as the set of all points inR
N closer to

origin~0, than to any other lattice point, see figure 5.6. The basisV for a given lattice
is not unique (i.e., a latticeΛ can be described by several different basis matricesV ).
However, any basis for a certain latticeΛ delivers the same unique Voronoi cell.

Let the Fourier transform of a continuous multi-dimensional signal uc(~x) with
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(c) (d)

Figure 5.7: (a) The LCD pixel grid and the view that is associated with each sub-pixel. The
green sub-pixels that are diverted to view 0 are circled. (b) All sub-pixels that are diverted
to view 0 are circled, independent from their color. (c) The reciprocal lattice of the green
sub-pixels for view 0. The Voronoi cell of the reciprocal lattice is indicatedin pink. In blue
the Nyquist frequency of the 1/3 orthogonal grid is indicated. Since the Voronoi cell does not
cover the complete Nyquist frequency range, slight aliasing in the higher frequencies might
occur. (d) The reciprocal lattice of the sub-pixel configuration of view0, ignoring their color.
Since the Nyquist frequency range (blue) is contained within the Voronoi cell (pink), there is
no aliasing in the intensity image.

~x ∈ R
N be defined as:

Uc(~f) =

∫

RN

uc(~x)e−j2π ~f ·~xd~x, ~f ∈ R
N (5.3)

The Fourier transformation of signaluc sampled on latticeΛ is periodical, with lattice
Λ∗ as periodicity [99]:

U(~f) =
1

|det V |

∑

~r∈Λ∗

Uc(~f + ~r) (5.4)

Consequently, if a signal that is not bandwidth limited within the Voronoi cell of
latticeΛ∗, is sampled on latticeΛ, spectral overlap (i.e., aliasing) occurs.

The sampling that occurs in the compositing phase can be examined, consider-
ing only one monochromatic primary color (red, green or blue), or can be evaluated
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for all colors together, see figure 5.7. The basis matricesV of the sample lattice
can be established by taking two (non-linearly dependent) vectors between adjacent
lattice points. The LCD pixel distance is used as a metric, which means that two
neighboring sub-pixels (e.g., red and green) have a distance of1

3 pixel. E.g., for
the color-independent lattice (figure 5.7b), we take the vectors ~v1 = (5

3 ,−1)T and
~v2 = (4

3 , 1)T . This delivers the following basis matricesV and their reciprocalsWT :

Vmono =

(

3 −1

0 −3

)

Vcolor =

(

5
3

4
3

−1 1

)

Wmono = 1
9

(

3 0

−1 −3

)

Wcolor = 1
9

(

3 3

−4 5

)

(5.5)

The individual views are rendered on an orthogonal grid, andthe Voronoi cell
of an orthogonal lattice is a simple rectangle. The maximum resolution that can be
visualized on the lenticular screen can be examined by fitting this Nyquist frequency
rectangle range of the orthogonal grid on the Voronoi cell ofthe reciprocal lattice of
the lenticular sample grid.

A logical choice for the resolution of the individual views,for a lenticular screen
with 9 views, seems to be13 of the LCD pixel grid resolution in both directions. After
all, this represents the same amount of information: 9 viewswith each 1

3 · 1
3 · the

amount of pixels of the LCD grid. We call this the 1/3 orthogonal grid. The Nyquist
frequency rectangle of this resolution has been depicted ontop of the Voronoi cell of
the reciprocal lattice of the lenticular sample grid in figure 5.7. Looking at a single
primary color channel (in figure 5.7a the green sub-pixels are used, but the lattice
is the same for red and blue), it can be noted that the rectangle is not completely
encapsulated within the Voronoi cell. This means that for monochromatic red, green
and blue images there is a slight undersampling in certain directions, and aliasing
might occur in the higher frequencies. If the lenticular lattice for a single view is
considered, regardless of the colors of the sub-pixels, then the rectangle is completely
contained within the Voronoi cell, see figures 5.7b and d. This implies that for grey
colored images there is no aliasing when only the intensities are considered, but there
might be some aliasing between the colors. In practise this behaviour resembles color
dithering for real-world images. High frequent primary-colored structures (such as
thin lines) may suffer from slight visible aliasing artifacts, though.

5.6 Dynamic resolution

As long as there are sufficient processing resources available, we use the 1/3 orthogo-
nal grid as resolution of our views. This resolution provides a good trade-off between
maximum detail and minimum aliasing, as described above. When the frame rate
falls below a pre-defined threshold, the resolution of the individual views can be low-
ered, see figure 5.8. For sake of simplicity we use the same resolution for all views
that contribute to a particular frame, but there is no technical reason imposing this.
The resolution of a view can simply be changed by setting the view port to the desired
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(a) (b)

Figure 5.8: (a) The lenticular screen has been photographed, to show how a view is being
displayed, rendered at the 1/3 orthogonal grid resolution. (b) The same view, but sampled at
0.375· the resolution of the view in figure a). Though the downsampling is visible, theeffect
is less strong than might be expected. This can be contributed to the fact thatthe displaying
process possesses a low-pass filter character, due to effects like crosstalk.

(a) (b)

Figure 5.9: (a) The raw output signal that is send to the lenticular display. Please note that the
Moiré-like structures are not artifacts, but can be contributed to the interweaved sub-pixels,
belonging to different views. (b) A zoomed fragment of the left image.

size. The size of the off-screen buffer containingtexture1is not changed; it is always
kept at the maximum size needed.

Of course, lowering the view resolution does not guarantee that the desired min-
imum frame rate is achieved. This is mostly determined by themajor bottlenecks
in the 3D scene [55], see chapter 3. In cases where the major bottleneck is deter-
mined by the fragment throughput, the frame rate scales verywell with the view port
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Figure 5.10: Dashed line: frame rate in frames per second (fps). Solid line: view resolution
scaling. The horizontal axis represents the consecutive frame numbers.

size, and may increase significantly. Whene.g., the vertex throughput is the most
important bottleneck, the frame rate is largely independent of the view port size.

Lower resolution views, correspond to smaller Nyquist rectangles in the fre-
quency domain. For lower resolutions, the rectangle typically fits in the Voronoi cell
of figure 5.7c, which implies that the view is oversampled by the compositing process.
This corresponds to low-pass filtering the view at maximum resolution, which means
that reducing dynamically the view resolution does not leadto aliasing artifacts, but
merely to loss of detail. These details can be regained when the scene content is more
static, and there is sufficient time to render the scene at high resolution.

To composite the final image, which will be displayed on the lenticular screen,
the red, green and blue component of each pixel has to be sampled from a different
view (see figure 5.2). The view number stays fixed all the time for each sub-pixel.
Therefore this information is pre-calculated once, and then put in a static texture map,
calledtexture0.

In the compositing phase, all the pixels in the output image are parsed by a GPU
program. For each normalized pixel coordinate~p in the output image,texture0will
deliver the view numbersn that have to be sampled for the red, green and blue com-
ponents. The respective views are then sampled intexture1according equation 5.2,
using bi-linear interpolation, delivering the appropriate pixel value, see figure 5.9.

5.7 Results

Figure 5.10 shows the adaptive adjustment of the view resolution. The minimum
desired frame rate was set to 7 frames per second in this case,which corresponds
to rendering 63 views per second, since the lenticular display requires nine views to
compose one frame. The measurements were performed using volume rendering of
the data set depicted in figure 5.8, and involved advanced lighting. It consisted of
2562 ·200 voxels (25 MB), while the output signal comprised1600 ·1200 pixels. The
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Volume description
Frames Views

per second per second

3DRX foot,2562 · 200 voxels (25 MB) 52.4 471
CT head,5122 · 256 voxels (128 MB) 19.2 173
3DRA vascular (sparse),5123 voxels (256 MB) 21.3 192
4D cardiac CT, 3 phases of5122 · 333 voxels (totally
510 MB)

13.6 123

Table 5.1: The performance of GPU-accelerated volume rendering when generating images
for the lenticular screen.

resolution of the views was the resolution of the 1/3 orthogonal grid, multiplied by
the scaling factor (right vertical axis) in both thex- andy-direction.

In order to characterize the performance of the GPU-accelerated volume render-
ing and compositing, several data sets were rendered at the 1/3 orthogonal grid res-
olution to an output window of8002 pixels. Nine views were rendered per frame,
and the view size was2642 pixels. Table 5.1 shows the frame rates that were mea-
sured, using different datasets. All measurements were obtained, using a 2.33 GHz
Pentium 4 system, with 2 GB RAM memory, and an nVidia QuadroFX3500 with
256 MB on board memory as graphics card. It becomes clear thatin order to achieve
acceptable and interactive overall frame rates, a substantial number of views have to
be rendered per second. Here we benefit considerably from theGPU acceleration and
sophisticated optimization techniques that were described in chapter 3.

5.8 Clinical setup

We applied the presented approach to visualize intra-operatively acquired 3D data sets
on a Philips 42” lenticular screen, which was mounted in the operation room (OR),
see figure 5.11. The screen possesses an LCD panel consistingof 1920× 1080 pixels
(HD resolution), which are refracted into nine distinct views by the lenticular lenses.
The orientation of the depicted 3D data set can follow in realtime the orientation of
an X-ray C-arc system, which means that on the lenticular display the 3D data set
is visualized from the same viewing angle as the viewing incidence on the patient
in the real-time X-ray image, see section 6.6. This approachallows to reduce the
X-ray radiation, since the physician can choose the optimalorientation to acquire
X-ray images without actually radiating. Further it improves the interpretation of
the live projective 2D X-ray image, which is presented on a separate display, since
the 3D data on the stereoscopic screen (which is in the same orientation) gives a
proper depth impression through the stereovision of the lenticular screen. The fact
that the clinician is not limited to a single sweet spot (a single viewing location where
the stereoscopic effect can be perceived), makes the multi-view display particularly
suitable for this environment, since the clinical intervention demands that an operator
can be positioned freely in the range close to the patient.
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Figure 5.11: Top: the 42” lenticular screen (top right display) in the operating room. Bottom:
the X-ray C-arc system in a clinical intervention.

The ability to visualize and manipulate the 3D data interactively is of great im-
portance in the analysis and interpretation of the data. Interactivity, in this context,
means that the frame rates of the visualization are sufficient to provide direct feedback
during user manipulation (such as rotating the scene). When the visualization’s frame
rate is too low manipulation becomes very cumbersome. Five frames per second are
often used as a required minimum frame rate.

Especially the cerebral vasculature consists of many curved vessels, see figure 5.12.
From a single X-ray image it is impossible to interpret the curvature perpendicular to
the viewing plane (the curvature in thez-direction of the image). But even looking
at a 3D rendered image on a 2D plane (i.e., conventional monitor), it is often very
difficult to estimate the in-plane curvature without rotating the vessel tree. Rotating
a 3D scene is not a problem when sitting behind a desktop computer, but during a
clinical intervention the performing clinician is primarily occupied with the medical
procedure, and interaction with sterile computer input devices (which are available in
the OR) is an additional task, demanding focus. The stereoscopic image allows to in-
terpret the 3D shape, including the in-plane curvature, in asingle glance without any
additional input interaction, and therefore reduces the mental stress on the clinician
during the intervention.



5.9 Conclusions 57

Figure 5.12: Volume rendered vascular 3DRA images. From left to right: brain arteriovenous
malformations, virtual stenting and aneurysm (blue), another neuro vessel tree with aneurysm,
and vasculature mixed with soft-tissue data.

5.9 Conclusions

In this chapter a method for accelerated rendering to multiview lenticular displays has
been presented. Due to the GPU-acceleration, together withthe adaptive adjustment
of the intermediate view resolution, interactive frame rates can be reached, which
allows intuitive manipulation of the rendered scene. Sinceboth the volume rendering
and the compositing take place on the graphics hardware, therequirements for the
other components of the PC system are rather modest. Thus therealization of the
proposed high performance system can be very cost effective, apart from the costs of
the lenticular screen.

Feedback from clinicians indicates that there certainly isa perspective for clin-
ical added value. Orthopedic surgery is suggested as another application area that
could benefit from the multi-view stereoscopic display. Forbetter integrated usage,
the display should be mounted on the same ceiling suspensionwith the other (2D)
displays. Also the integration of the live fluoroscopy imagein the 3D scene would
be highly appreciated. Both the fact that the clinicians do not need to wear any addi-
tional glasses, and are not limited to a sweet spot, as well asthe fact that large data
sets can be manipulated interactively, make this method very suitable for a clinical
interventional environment. In order to give an impressionof the added value of the
depth perception provided by the stereoscopic 3D effect, figures 5.13 and 5.14 show
anaglyph images of a carotid artery.
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Figure 5.13: Anaglyph image of a 3DRA reconstruction showing a aneurysms in a carotid
artery. The stereovision effect is obtained by using anaglyph glasses: the left eye glass should
be red and the right eye blue.



5.9 Conclusions 59

Figure 5.14: Anaglyph presentation of the same dataset as in figure 5.13, but shownfrom a
different angle.
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Registration is the process of spatially aligning two imagedatasets, such that the
corresponding anatomical morphology in both datasets overlaps. The application of
image registration during a clinical intervention imposesconstraints on the algorithms
and their possibilities to interact with the user.

The major restriction on the algorithm is the available computation time. In spite
of Moore’s law, the computation time for registration algorithms tends to be rather
considerable and ranges from minutes to hours. For usage during clinical interven-
tional treatment, this amount of time is not available.

Many registration methods benefit from interaction with theuser. They either
need user input to perform the registration task, or benefit from user driven initializa-
tion, which can shorten their computation time. The possibilities for user interaction
during treatment, however, are limited. The clinician is typically standing in the inter-
vention room at the patient’s table side, and input devices are often less accurate and
not always easy to use (e.g., due to sterility requirements) than compared to desktop
usage. Also, the display is frequently one or more meters away or at an awkward
angle. Furthermore, the clinician is focussed on the clinical procedure and there is
only limited time and attention for computer interaction.

The registration methods which were developed and applied took these constraints
into consideration. In the following chapters first the relevant state of the art is in-
troduced (chapter 6), a fast approach to registration algorithms by using the graphics
hardware is described in chapter 7, and finally chapter 8 introduces a method espe-
cially designed for vascular 2D-3D registration.





Chapter 6

Registration algorithms

6.1 Introduction

The objective of a registration algorithm is to establish a spatial mapping between
two image datasets. Typically, one of the datasets is assigned to be the reference data
and is not modified, while the other dataset is handed the roleof floating data, and is
spatially manipulated to match the structures in the reference data. Most registration
algorithms consist of three components;

• A spatial transformation, delivering a mapping between thecoordinate space
of the floating image and the coordinate space of the reference image.

• A similarity measure, indicating the quality of a given spatial transformation by
expressing the resemblance of the reference data and the spatially transformed
floating data in quantifiable terms.

• An optimization algorithm, which iteratively searches theoptimum of the sim-
ilarity measure. The search space consists of the multi-dimensional control
variables of the spatial transformation.

It should be noted that this decomposition does not apply to all registration ap-
proaches known in the literature. Demons or optical flow algorithms, for exam-
ple, integrate the deformation and optimization components in a single combined
scheme [100, 101].

The image data may originate from different imaging modalities, and is not re-
stricted to only two dimensional images, but may also refer to higher dimensional
data (e.g., 3D or 4D). It is also possible to register images of different dimensionali-
ties, which results in a spatial mapping that is a one-to-many mapping. In this work
we focus on 3D-3D registration of multi-modal data and 2D-3Dregistration between
2D X-ray projection images and 3D voxel data, whereby we pay especially attention
to the calculation time of the algorithms.

65
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6.2 Spatial transformation

6.2.1 Affine transformations

Spatial transformations can be divided into two classes; affine and non-affine transfor-
mations. Affine transformations consist of a linear transformation and a translation,
and can be expressed by:

~x 7→ A~x +~b (6.1)

In homogeneous coordinates the affine transformation can becaptured in a single
matrix (for 3D space, a4 × 4 matrix):

[

~y

1

]

=

[

A ~b

0, . . . , 0 1

]

[

~x

1

]

(6.2)

An important property of affine transformations is the fact that there are relatively
few parameters to describe the transformation, which allows affine registrations to
be calculated relatively fast, compared to non-affine registrations, due to the limited
dimensionality of the parameter space. Since all spatial elements (i.e., pixels or vox-
els) undergo the same transformation, the computation of anaffine registration is
relatively robust. After all, a false transformation leadsto a discorrespondence for
(almost) all spatial elements.

Rigid transformation is the most commonly used sub-class ofaffine transforma-
tions. Rigid transformations only consist of a rotation andtranslation, and thus do not
possess any scaling or skewing. Rigid transformations represent the non-deforming
displacement of subjects.

6.2.2 Non-affine transformations

Non-affine (or elastic) transformations are applied to describe local deformations. It
is possible to divide non-affine transformations into threesubclasses:

• Mesh based transformations. A mesh of non-uniformly distributed control
points is established. Typically the control points are placed on some fea-
tures that are extracted from the floating image,e.g., gradients, ridges, seg-
ment boundaries,etc. The mesh is then projected on the reference image, and
the control points are manipulated according to some criterium (e.g., optimiz-
ing the similarity measure, or finding corresponding patterns in the neighbor-
hood of the control point). The deformation of the image elements between the
control points is then driven by the displacement of the control points. Most
commonly the mesh is triangulated, and the elements within atriangle (or tetra-
hedron in 3D) are linearly interpolated.

• Uniform grid based transformations. A uniform grid of control points drive a
linear combination of a class of basis functions [102]. Common choices for
the basis functions are orthonormal wavelet or Fourier bases [103], thin plate
spline models using radial basis functions [104], elastic body splines [105], or
B-splines [106, 107]. The latter have the advantage of localsupport, which
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allows a reduction of computation time. The advantage of theuniform grid ap-
proach is the fact that there is no dependency of the robust extraction of feature
points. The disadvantage is the fact that in order to describe fine deformation
structures, a huge number of control points is needed. Thereare, however,
techniques that allow to ’switch off’ control points dynamically during the reg-
istration (e.g., when the derivative of the similarity measure is very low for
a certain control point), and thus reduce the dimensionality of the parameter
space, seee.g., [108].

• Direct mapping. These methods map each element in the floating image di-
rectly on the reference image [100, 101]. In every iterationa displacement is
established for each image element of the floating image, andthen typically
a regularizer is applied to the displacement field. Omittingthe regularization
would yield an ill-posed problem [102].

6.3 Similarity measure

The similarity measure indicates how well the content of thereference image and the
spatially transformed floating image overlap. Similarity measures can be grossly sub-
divided into two classes: intensity driven approaches and feature driven approaches.
As a rule of thumb feature driven approaches are faster than intensity based meth-
ods, since the amount of information needed to describe the features is usually sig-
nificantly smaller than the amount of original image information. Feature driven
approaches are usually targeted at registering a specific anatomical structure. Their
typical weak points are the dependency on robust extractionof the desired features
from the image, and their reduced suitability for non-affineregistration due to lack
of per-point information, especially outside the feature areas. In intensity based ap-
proaches, information of the entire image space contributes to the similarity measure,
which aids in developing reliable non-affine registration methods.

The choice of the similarity measure depends very much on thesubject to be
registered (i.e., which anatomy, region of interest,etc.), and on the types of images
(i.e., modality, dimensionality,etc.) to be used. Popular intensity driven similarity
measures are sum of squared differences (SSD) and mutual information (MI) [109].

An important aspect for intensity driven similarity measures is image interpola-
tion. Images (in any dimensionality) are composed of a set ofdiscrete spatial ele-
ments. However, the spatial transformation is typically defined as a continuous map-
ping R

N 7→ R
M , with N andM denoting the dimensionality of the floating and

reference image space, respectively. This means that in thefloating image intensities
‘in-between’ the discrete spatial element positions have to be determined. According
to the Shannon-theorem, any bandwidth limited signal can bereconstructed from a
set of discrete samples usingsinc interpolation, provided the sample rate fulfills the
Nyquist criterion. Unfortunately, this interpolation is computationally very expen-
sive. Unseret al. has demonstrated that higher order B-spline interpolation forms a
good alternative [110]. In section 7.2 it is discussed how this can be mapped effi-
ciently on the processing capabilities of the GPU.
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In SSD for all spatial elements in the reference image, the difference between
intensities of the reference element and the correspondingelement in the spatially
transformed floating image are calculated. The sum of the squares of these differ-
ences, divided by the number of processed elements, yields the SSD similarity mea-
sure. Since SSD is very sensitive to large intensity differences, it is primarily suited
for single-modality registration. The least-squares formof SSD makes it computa-
tionally very attractive for optimizers that use the derivatives of the similarity measure
and assume a quadratic form, such as Quasi-Newton and Levenberg-Marquardt opti-
mizers.

MI is a concept known from information theory, and expressesthe statistical re-
lation between two given sets of ordered data, and can be formulated in terms of
entropy. The entropy of a random variableX, consisting of a number of eventsx,
with probability distributionp(x), is H(X) = −

∑

x p(x) log(p(x)). The entropy
is maximal when the probability is uniformly distributed,i.e., each event has equal
probability. Its minimal value of zero is reached whenp(x) = 1 for one event and
zero for the others.

MI can be expressed, using the joint entropyH(A,B; τ) and marginal entropies
H(A) andH(B; τ), wherebyA denotes the reference image,B the floating image,
andτ the spatial transformation:

I(A,B; τ) = H(A) + H(B; τ) − H(A,B; τ)

=
∑

a∈A

∑

b∈B

p(a, b; τ)log

(

p(a, b; τ)

p(a)p(b; τ)

)

(6.3)

The joint probabilityp(a, b; τ) can be easily obtained by determining the joint his-
togram of the reference image and the transformed floating image. The joint his-
togram is a two dimensional histogram, whereby the one axis represents the inten-
sities of the reference image and the other axis the intensities of the floating image.
The joint histogram bins represent the occurrence of their particular intensity pair for
the entire set of spatial positions in the image space. In order to be robust for noise
and to speedup calculations, the histogram bins usually represent a range of intensi-
ties. Commonly the whole intensity range of an image is divided into 8 to 64 evenly
spaced bins.

In its simplest form, it is not possible to determine the derivative of the MI sim-
ilarity measure with respect to the spatial transformationparameters. In order to
overcome this limitation several approaches have been proposed; The Parzen win-
dow distributes intensities over several adjacent bins [111], while the (generalized)
partial volume approach pairs the spatial elements in the reference image to range of
elements in the floating image according to a chosen kernel [109, 112]. Dirk Loeckx
has demonstrated that all mentioned variations of MI can be captured in a single
comprehensive framework, which can be expressed in a singleformula [113]. This
framework also makes it insightful how the derivative can beobtained, and why it is
not available for the simplest form of MI.

The iterative closest point (ICP) algorithm or a variation thereof is being used in
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many feature-based methods. ICP relies on minimizing the sum of minimal distances
between the feature points in the reference and projected image. It can be efficiently
calculated by determining the distance transformation of the features in the reference
image as a preprocessing step. The ICP is then obtained in theiterations by projecting
the transformed features of the floating image on this distance transformation, and
summing the sampled distances [114].

6.4 Optimization

Finding the parameter set that delivers the optimal transformation according to the
chosen similarity criterion can be a challenging task. The dimensionality of the pa-
rameter space can be enormous when there are many control points, and even rigid
registration already possesses a six dimensional parameter space. In this huge space
there are often many local optima. Establishing the global optimum within the time
frame that is available during interventional treatment isnot a possibility given cur-
rent computation resources (even when using a workstation cluster). Therefore local
optimization strategies are used. The global optimum (or a reasonable approxima-
tion) can be found by a local optimization strategy, provided the initialization of the
parameter configuration is within a sufficient monomodal range of the similarity func-
tion.

The local optimization strategy can advance much faster when analytical deriva-
tives of the similarity measure are available. Gradient descent, Quasi-Newton and
Levenberg-Marquardt are examples of such optimizers [115]. An example of an opti-
mization strategy that does not require derivative information is Powell’s method [116].
This method searches the parameter space by performing a line search in every direc-
tion of an orthonormal basis in each iteration. The basis canbe adapted between the
iterations. It may be obvious that this approach takes considerably more time, but is
also somewhat less likely to get trapped in small local optima.

Another group of strategies that do not demand derivative information are the
probabilistically based algorithms, such as simulated annealing [117] or controlled
random search [118]. These methods sample the parameter space in each iteration
around an intermediate set of best samples according to a stochastically driven strat-
egy. These types of algorithms are even more robust to local optima than Powell’s
method, but their results are not necessarily reproducible. Furthermore, they typi-
cally need a lot of samples before the optimum is found with a reasonable accuracy.
Stochastic algorithms can be implemented to perform a localsearch, starting from an
initial configuration, or a global search with a random initialization.

Independent from the chosen optimization strategy, a good approach has proven
to be the following: start the registration with a number of iterations in low resolution
with few control points to find large deformations, and gradually refine the registra-
tion by moving to higher resolutions and more control points. The low resolution
images represent a coarse scale, and are very suitable to findlarge magnitude low
frequency deformations. Also the iterations in low resolution can be computed rela-
tively fast. Unseret al. have shown how the image pyramids that contain the image
in different resolutions can be efficiently obtained [119].
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6.5 Validation

The objective of validation is the assessment that the registration algorithm fulfills
its clinical purpose [120]. The validation of the algorithmshould always be con-
ducted in the context of its application. Many boundary conditions are determined
by the application; Which imaging modalities are being used?What is the typical
spatial resolution, dimensionality, signal to noise ratio, field of view,etc., of the im-
ages? Which anatomy is being imaged? Is manual interaction with an expert user
an option? Which computation times are acceptable? Which typeand amount of
non-ridged deformations are to be expected?Etc., etc., etc. When the context of the
application has been established, a set of representative datasets has to be gathered.
Usually, for initial development a rather limited databaseis being used, but for proper
validation a representative database with sufficient variability is needed. There are
several aspects that are evaluated during the validation ofa registration algorithm.
The properties that most commonly are investigated are: effectiveness, robustness
and duration (computation time) [121].

The ground truth is the transformation that perfectly describes the spatial relation
between two image datasets. The effectiveness of an algorithm describes how close
the algorithm can approach the ground truth. It can be evaluated qualitatively by over-
laying the reference image data with the transformed floating data, and visually in-
specting the result for deviations. The effectiveness can be investigated quantitatively
by the residual error, which measures the deviation of the transformation yielded by
the registration algorithm from the ground truth. Since theground truth usually is un-
known, a gold standard is used, approximating the ground truth as closely as possible.
A gold standard can be obtained bye.g., using simulated data, using expert identified
landmarks [122], or recording extrinsic data using a controlled environment (e.g.,
fiducial markers or optically tracked probes) [120],etc. For rigid transformations the
residual error can be expressed as the translational and rotational difference between
the registration result and the gold standard. For elastic registration it can be quanti-
fied by the root mean square (RMS) error between all points in the registration and
gold standard deformation field:

e =

√

1

|V |

∫

V

|τ(x) − τ̃(x)|
2
dx (6.4)

wherebye expresses the RMS error,V the region of interest,τ the spatial deformation
yielded by the registration, and̃τ the gold standard.

A quantitative indicator for the robustness of a registration algorithm is its capture
range. It is defined as the range of initial poses of the floating data that still deliver
a registration of sufficient quality. Or in other words: how far can the floating image
be initialized from the ground truth, without causing the registration algorithm to
fail. When a gold standard is available, a successful registration can be defined as
a residual error smaller than a predetermined threshold. Inthe absence of a gold
standard the success of a registration can be judged by an expert.

Within this work, several validation experiments were conducted. The intrinsic
inaccuracies that are introduced in GPU-based elastic registration are described in
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section 7.2.3, and the associated computation times are investigated in section 7.4.2.
Chapter 8 discusses the effectiveness, robustness and duration of vesselness-based
registration. The capture range and computation times are evaluated using real clin-
ical data, while the residual error is measured using simulated data to obtain a gold
standard. Chapter 9 explores the robustness and clinical feasibility of intra-operative
registration of 3DRA to CT data and 3DRA to MR data.

6.6 Machine-based 2D-3D Registration

6.6.1 Introduction

In the previous sections the registration was driven by the image content, using an
image-based registration algorithm. There are numerous image-based 2D-3D regis-
tration methods known in the literature for registering fluoroscopy images to either
CT or MR images [123–129]. These algorithms, however, take aconsiderable amount
of time to compute. Further they need a sufficient number of landmarks to be present
in the 2D fluoroscopy image, which is not necessarily always the case (e.g., due to
the absence of contrast medium).

In this section, a fundamentally different approach is presented: machine based
registration. With the introduction of motorized calibrated C-arm X-ray angiography,
3D reconstruction of the vasculature came within reach. Since such 3DRA datasets
are obtained with the same apparatus as the 2D fluoroscopy data, it is possible to
calculate a spatial mapping, based on the state of the geometry (viewing incidence
angles, source-detector distance,etc.) and calibration data, provided that there was no
patient motion between the acquisition of the 3DRA data and fluoroscopy data [130–
132]. This method also allows to obtain a registration, whenthere are insufficient
landmarks present in the images (e.g., due to the absence of iodine contrast medium
in the fluoroscopy images). A further advantage of machine-based registration is the
fact that it can be computed in realtime. Machine-based registration and image based
2D-3D registration have been compared by Baertet al. [133]. They concluded that
pre-calibrated machine based registration is highly accurate as long as there is no
patient motion, and a registration error of less than 0.5 mm was observed in their ex-
periments. Image based registration, though slightly lessaccurate, proved to be more
robust for (limited) patient motion. A method for determining the C-arm incidence
based on tracking a fiducial was proposed by Jainet al. [134], who reported a mean
accuracy of 0.56 mm in translation (standard deviation: 0.33 mm) and 0.33◦ in rota-
tion (standard deviation: 0.21◦), using a fiducial of3 × 3 × 5 cm. We, however, do
not use any fiducials. We only use the information concerningthe geometry state, as
is provided by the C-arm system.

6.6.2 Calibration

In a CT gantry the X-ray tube and detector array are rotating in a large rigid ring.
This leads to a stable, easily measurable and predictable relative position of the X-ray
tube and detector array, a prerequisite for tomographic reconstructions. The X-ray
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Figure 6.1: The mechanical components of the X-ray C-arm.

C-arm is of a completely different mechanical constructionwith only a few joints
connecting the different parts, see figure 6.1. Especially the fact that load of the
weight of the C-arm (including the X-ray tube and detector) relative to the L-arm
differs depending on its angulation and rotation leads to variation in the bending of
the C-arm. Luckily the bending for a given pose proves to be geometrically very
reproducible (sub millimeter).

In order to perform 3D tomographic reconstructions using C-arm equipment (see
section 2.4.3), calibration methods have been developed todetermine the actual po-
sition of the X-ray tube and detector for a given set of mechanical propeller, roll and
L-arm angles [135, 136]. The original calibration methods were developed for the
image intensifier systems, see section 2.3, and corrected also the pincushion defor-
mation that was caused by the image intensifier tube. Modern flat detector systems
do not suffer from this image deformation, and the calibration only needs to correct
for mechanical bending due to gravity.

The parameters that are measured in the calibration procedure are the deviation
of the focal spot location, the deviations of the iso-centerlocation and orientation.
All parameters are measured for varying C-arm poses. The focal spot location is
determined by mounting a grid on the detector at a fixed distance. This grid contains
a number of bronze markers. The deviation from the expected position determines
the actual location of the focal spot [136].

The location and orientation of the iso-center axes are obtained by placing a reg-
ular polyhedron (dodecahedron) with marker balls on the corners at the iso-center of
the C-arm, and performing a circular movement with the C-arm. During the move-
ment X-ray images are obtained, and the center of the marker balls in the images
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Figure 6.2: The projection of a point in 3D space on the detector grid is determined by the
position of the focal spot and the position and orientation of the detector.

are detected. The detection of the markers, which are distributed nearly isotropically
in the image, is a fairly easy task, since they absorb considerably more X-ray dose
than any other object on the image. On the detected markers the geometrical shape
of the dodecahedron is fitted, using an L2-error norm [136]. All calibration steps
are fully automatic, and need only to be performed at installation and after system
disturbances.

6.6.3 Projection

A common part in 2D-3D registration algorithms is the projection of a point in 3D
space on the X-ray detector plane. In order to perform this projection, a4× 4 matrix
M is defined, such that~p = M · ~v, whereby~p and~v are homogenous coordinates.
Vector~v is then a coordinate in the 3D CT space, and vector~p a coordinate on the
detector grid (thez value of~p is simply disregarded).

Understanding the projection in mathematical detail is best accomplished by con-
sidering the components of the transformation chain separately. Matrix M can be
decomposed into two matrices:

M = P · R, (6.5)

wherebyP is the perspective transformation defined by the position ofthe focal spot
(fx, fy, fz), the position of the center of the detector(cx, cy, cz), and the detector
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Figure 6.3: The X-ray angiography C-arm system’s geometry, and its degrees offreedom.

dimensions(dx, dy), see figure 6.2.

P =









2/dx 0 0 2(fx − cx)/dx

0 2/dy 0 2(fy − cy)/dy

0 0 1 0

0 0 1/(fz − cz) 1









(6.6)

Matrix R describes the viewing incidence of the X-ray C-arm geometry, and is
determined by the L-arm (Rz), the propeller (Ry) and the roll rotation (Rx) of the
C-arm, and can be expressed asR = Rx ·Ry ·Rz, see figure 6.3. Note that the order
of the matrix multiplications is given by the mechanics of the C-arm system.

R = Rx · Ry · Rz =









1 0 0 0

0 cos α − sin α 0

0 sin α cos α 0

0 0 0 1









·









cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1









·









cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1









The anglesα, β andγ are corrected for gravity effects, using the calibration data,
as explained in the previous section. Now that matrixM is established, expressing
the relation between the 3D space and the detector space, we can project any given
position immediately on the detector grid.



Chapter 7

GPU-acceleration in Elastic
Image Registration

This chapter is partially based on the following papers:

• Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetens. Efficient GPU-Accelerated Elastic
Image Registration.In Proc. Sixth IASTED International Conference on BIOMEDICAL ENGI-
NEERING (BioMed),February 13-15, 2008, Innsbruck (Austria), pp. 419-424

• Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetens. Accuracy of GPU-based B-Spline
Evaluation.In Proc. Tenth IASTED International Conference on COMPUTERGRAPHICS AND
IMAGING (CGIM),February 13-15, 2008, Innsbruck (Austria), pp. 117-122

• Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetens. Efficient GPU-Based Texture Inter-
polation using Uniform B-Splines.Journal of Graphics Tools,Volume 13, Number 4, pp. 61-69,
2008

7.1 Introduction

The advantage of elastic intra-patient image registrationover rigid registration is the
fact that it can take local deformation of anatomical structures into account. A cubic
B-spline based deformation field is sufficiently smooth to model local elastic dis-
placements of anatomical structures (e.g., organs or breast) [107, 137]. However,
the application of elastic registration during interventional treatment is still seriously
limited by the considerable computation time, which is determined by the very large
parameter space of the elastic deformation.

An approach to reduce the computation time, without changing the essential algo-
rithm, is the employment of the vast computation power of themodern off-the-shelf
GPU hardware. Though the overall computation power of the GPU nowadays sur-
passes the capabilities of the CPU, its performance does notscale equally well for any
type of algorithm. In the literature there are several publications dealing with GPU-
based elastic registration [138–140], using a piece-wise linear deformation field. We
propose a GPU-driven cubic B-spline deformation field, which yields a smoother
warping, and therefore can be considered to be a more realistic model for organic
deformations.

75
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Further we discuss how the capture range of the elastic registration can be en-
larged. It is well known [141] that derivative-based optimizers (e.g., quasi-Newton-
like optimizers) only evolve to the correct solution if the initial position in the param-
eter space is sufficiently close to the optimum. Our approachto elastic registration
lends itself very nicely to use derivative information fromlarger scale-spaces [142].
This allows the optimization process to take information ofa larger neighbourhood
into account, and therefore is less prone to get stuck in a local optimum.

7.2 Uniform B-spline interpolation

Uniform spline-based interpolation was introduced by Schoenberg [143] and has been
described exhaustively by Unser [110]. The starting point for any degree of the B-
spline function forms the B-spline basis of degree 0, also known as the box function.
We use the variant of the B-spline function that is centered around the origin, which
is chosen since its symmetry can be exploited within the GPU program:

0

1

-½ ½

β0(x) =







1, |x| < 1
2

1
2 , |x| = 1

2

0, |x| > 1
2

(7.1)

Any subsequent B-spline basis of degreen can be obtained by the recursive con-
volution of the box function with the B-spline basis of degreen − 1:

βn(x) = β0(x) ∗ βn−1(x), n ≥ 1 (7.2)

The derivative of the B-spline basis function can easily be obtained by:

δβn(x)

δx
= βn−1

(

x + 1
2

)

− βn−1

(

x − 1
2

)

(7.3)

Which means that the derivative of a B-spline function of degreen, is a B-spline
function of degreen − 1. Further it can be concluded that the B-spline function of
degreen has a non-zero derivative up to then-th order, which is a indicator for the
‘smoothness’ of the function.

The integral of the B-spline basis function of degreen can be expressed as:

x
∫

−∞

βn(x) dx =
+∞
∑

k=0

βn+1

(

x −
1

2
− k

)

(7.4)

Spline-based interpolation at a given positionx ∈ R can be written as:

s(x) =
∑

k∈Z

c(k)βn(x − k) (7.5)
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Figure 7.1: Cubic B-spline interpolation. The image coefficientsc are multiplied by the
weightswn(α). The weights are determined by the fractional amountα of the present co-
ordinate, and the B-spline basis functionβ3. Indexi is the integer part of the coordinate.

Or in words: the interpolated values at a given positionx is the summation of the
shifted central B-splineβn, weighted by the B-spline coefficientsc(k), which are
located on a uniform (regular) grid.

Since B-splines have limited support, the amount of coefficientsc(k) that play a
role in the interpolation at positionx are quite moderate. It should be pointed out
that c(k) = s(k) is only the case for the 0th and 1st order B-spline (corresponding
to nearest neighbour and linear interpolation). The coefficients for the cubic B-spline
can be efficiently obtained, using a causal and anti-causal filter (see [110]).

The 0th (nearest-neighbour), 1st (linear) and 3rd (cubic) order B-spline are most
popular. The 0th and 1st order B-spline can be evaluated very rapidly, and do not
need any change of sampled values. However often they do not produce a result
that is sufficiently close to natural signals. The cubic B-spline is sufficiently smooth,
while its support is still quite local (its width is 4), whichis favourable for the cost of
the interpolation. Since the deformation of organs and other anatomical structures is
typically rather smooth, we chose the cubic B-spline to model our deformation field.

7.2.1 Cubic B-spline interpolation

Evaluating cubic B-spline interpolation for any given position involves the weighted
addition of the four adjacent coefficients (see figure 7.1), which allows equation 7.5
to be rewritten as:

s3(i + α) = w0(α) · c(i − 1) + w1(α) · c(i)+

w2(α) · c(i + 1) + w3(α) · c(i + 2)
(7.6)

whereby the weightsw depend on the fractional amountα of the present coordinate,
and on the cubic B-spline basis function. More specifically:

w0(α) = β3(−α − 1)

w1(α) = β3(−α)

w2(α) = β3(1 − α)

w3(α) = β3(2 − α)

(7.7)
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7.2.2 GPU-accelerated cubic B-spline evaluation

Sigg and Hadwiger [13] have described how cubic B-spline interpolation can be per-
formed efficiently by the GPU. Their method is based on decomposing the cubic
interpolation into2N weighted linear interpolations, instead of4N weighted nearest
neighbor interpolations, wherebyN denotes the dimensionality. Since linear interpo-
lations are hardwired on the graphics hardware, they can be performed much faster
than addressing the corresponding set of nearest neighbor lookups.

The basic idea can be understood by considering 1D linear interpolation, which
can be expressed as follows:

s1(i + α) = (1 − α) · s0(i) + α · s0(i + 1) (7.8)

with i ∈ N being the integer part of the interpolation coordinate andα ∈ R being
the fractional part in the range[0, 1]. Building on this equation, the weighted addition
of two neighbouring samples can be rewritten to be expressedas a weighted linear
interpolation:

a · s0(i) + b · s0(i + 1) = (a + b) · s1(i + b
a+b

) (7.9)

Using equation 7.9, equation 7.6 can be decomposed into two weighted linearly
interpolated lookups:

s3(i + α) = g0 · c1(i + h0) + g1 · c1(i + h1)

g0 = w0 + w1

g1 = w2 + w3

h0 = (w1/g0) − 1

h1 = (w3/g1) + 1

(7.10)

wherebyc1 expresses linear interpolation between the cubic B-splinecoefficients.
This scheme can easily be extrapolated to theN -dimensional case, whereby

g~j =
∏

gjk
, and~h~j =

∑

~ek · hjk
, with k denoting the axis and~ek the basis vec-

tor. For 3D cubic interpolation 64 nearest neighbour lookups can be replaced by 8
linear interpolations. On modern GPUs that leads to a considerable performance gain.

Sigg and Hadwiger putg0, h0 andh1 as a function ofα in a 1D lookup texture
(g1 is redundant), and use this texture to obtain the variablesg andh in the GPU
program. They suggest using an RGB texture, consisting of 128 samples of 16-bit
accuracy, and using linear filtering between the samples. For 3D interpolation this
approach involves three lookups in this texture, and from the resulting parameters the
eight coordinates for the linear interpolations are calculated.

The lookup table distributes the cubic interpolation into two parts in the program-
ming code: the GPU part that performs the actual interpolation, and the CPU part
that creates the lookup table. Furthermore, the lookup table is one of the sources
of imprecision, since for any value between its entries linear interpolation is used.
Therefore, we explore the on-the-fly calculation of the weights on the GPU, reducing
source code complexity, and improving the precision.
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Equation 7.10 shows that the variablesg andh are a function of the B-spline
weightsw obtained in equation 7.7. Since the B-spline is composed of piece-wise
polynomials, it would appear that a GPU implementation would involve a number of
undesirable conditional statements, leading to a considerable slowdown of the GPU
program. However, the conditional statements can be avoided, since the determi-
nation of the weights is facilitated by the fact thatw0 is always located in the first
quadrant of the cubic B-spline,w1 always in the second,etc. Since the cubic B-
spline (as well as its derivatives) consist of a single equation per quadrant (see figure
7.2), the following equations for the set of weights can be established:

w0(α) = 1
6 · (1 − α)3

w1(α) = 2
3 − 1

2 α2 · (2 − α)

w2(α) = 2
3 − 1

2 (1 − α)2 · (1 + α)

w3(α) = 1
6 · (α)3

(7.11)

After the weights have been established, the variablesg andh can be calculated,
using equation 7.10. The CUDA code [144] below illustrates this process for the 2D
case. It should be noted that the code can be ported very easily to e.g., Cg [145], the
OpenGL Shading Language or DirectX HLSL.

__device__ float interpolate_bicubic(texture tex, float x, float y)
{

// transform the coordinate from [0,extent] to [-0.5, extent-0.5]
float2 coord_grid = make_float2(x - 0.5, y - 0.5);
float2 index = floor(coord_grid);
float2 fraction = coord_grid - index;

float2 one_frac = 1.0 - fraction;
float2 one_frac2 = one_frac * one_frac;
float2 fraction2 = fraction * fraction;
float2 w0 = 1.0/6.0 * one_frac2 * one_frac;
float2 w1 = 2.0/3.0 - 0.5 * fraction2 * (2.0-fraction);
float2 w2 = 2.0/3.0 - 0.5 * one_frac2 * (2.0-one_frac);
float2 w3 = 1.0/6.0 * fraction2 * fraction;

float2 g0 = w0 + w1;
float2 g1 = w2 + w3;
// h0 = w1/g0 - 1, move from [-0.5, extent-0.5] to [0, extent]
float2 h0 = (w1 / g0) - 0.5 + index;
float2 h1 = (w3 / g1) + 1.5 + index;

// fetch the four linear interpolations
float tex00 = tex2D(tex, h0.x, h0.y);
float tex10 = tex2D(tex, h1.x, h0.y);
float tex01 = tex2D(tex, h0.x, h1.y);
float tex11 = tex2D(tex, h1.x, h1.y);

// weigh along the y-direction
tex00 = lerp(tex01, tex00, g0.y);
tex10 = lerp(tex11, tex10, g0.y);

// weigh along the x-direction
return lerp(tex10, tex00, g0.x);

}
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Figure 7.2: The cubic B-spline, and its 1st and 2nd order derivative. Note that for all, there
is a single equation per quadrant. We use the variant of the B-spline functionthat is centered
around the origin, since this allows us to exploit its symmetry in the GPU programs.
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7.2.3 Accuracy and performance

In table 7.1 the deviation from the expected interpolated value is given for the lookup
table based cubic interpolation method and the on-the-fly method. The error is defined
as the normalized pixel intensity calculated by the GPU program, minus the intensity
calculated by the CPU using double floating point precision.The root mean square
of the errors was calculated for5122 pixels. The on-the-fly method is both more
accurate and faster. However, on older graphics hardware (before 2007) the on-the-
fly approach is slightly slower than the lookup table method,while still being more
accurate.

Table 7.1: Accuracy and timing of cubic interpolation with and without using a lookup table.
All measurements were obtained on an nVidia GeForce 9800 GTX.

Method RMS Time (ms)
Lookup table 9.39 · 10−5 0.96

On-the-fly 8.58 · 10−5 0.74

GPU-based interpolation suffers from another precision issue. Whene.g., an 8-bit
texture is filtered, most people would expect that first the neighboring texture knots
are queried, cast to floating point, and then weighted and added. This is, however, not
the case; the texture knots are first weighted and added, and then cast to floating point,
which limits the precision to the least significant bit of thetexture data format [59], as
is illustrated in figure 7.3. As a consequence, higher accuracies can only be obtained
by using larger texture words, and thus at the cost of texturememory consumption.
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Figure 7.3: The left graph shows linear interpolation between 0 and 1/65535 using a 16-bit
integer texture (dashed) and a 16-bit floating point texture (solid). The right graph zooms in
on the solid line, showing the limited precision of the fixed point texture coordinates.

A further precision issue of the linear texture interpolation is caused by the fact
that the accuracy of the texture coordinates is limited to a fixed point format with 8
bits of fractional value [146]. This means that there are only 254 discrete coordinate
positions between two texture knots, as shown in the zoomed graph in figure 7.3,
which especially is of interest when the knots are far apart (e.g., in a B-spline defor-
mation field for elastic registration). The mentioned texture interpolation accuracy
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(a) (b)

Figure 7.4: (a) A GPU-based B-spline deformed image. (b) A zoomed part of the leftimage.
The artifacts are clearly visible: the transition between the blocks should be smooth, whereas
it is jerky.

effects are the cause for the deviations of the on-the-fly method in table 7.1 and is
illustrated in figure 7.4.

Performance measurements of 3D cubic B-spline interpolation, using a CUDA
implementation of the on-the-fly method on an nVidia GeForce9800 GTX, reached
356 · 106 cubic interpolations per second. As a reference, a straightforward CUDA
implementation using 64 nearest neighbour lookups delivered 93.6 · 106 cubic in-
terpolations per second, and simple tri-linear interpolation delivered486 · 106 linear
interpolations per second. Cubic interpolation was also implemented to run on the
CPU. On an Intel Xeon 5140 2.33 GHz a straightforward implementation delivered
0.45 · 106 cubic interpolations per second and a multi-threaded SSE implementation
managed10.3 · 106 cubic interpolations per second.

Since the tri-cubic approach uses eight tri-linear interpolations per cubic interpo-
lation, a slowdown of factor eight could be expected. The cubic interpolation scores
much better than this, which can be explained by the fact thatthe mentioned eight
linear interpolations are spatially very close to each other, and the data, therefore, is
still locally present in the texture cache. This favorable performance aspect, together
with the compact code, makes the cubic B-spline interpolation an attractive solution
for fast and high quality interpolation on the GPU.

7.3 GPU-accelerated Elastic Registration

7.3.1 Similarity measure

The similarity measureE used in intensity based registration algorithms is a func-
tion of the reference imageA and the floating imageB, which is deformed to the
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coordinate space of the reference image:

E = E(A,Bτ ) (7.12)

wherebyBτ represents the deformed floating image. Let~i be a position in the ref-
erence image space, and the function~τ(~i) be the deformation of the reference image
coordinate system to the floating image coordinate system. ObviouslyBτ andB are
connected as follows:

Bτ (~i) = B(~τ(~i)) (7.13)

In this chapter we will restrain ourselves to the class of algorithms, in which the
similarity measure can be expressed as a sum of contributions per spatial element
(pixel for 2D, voxel for 3D,etc.). Sum of Squared Differences (SSD) and Cross-
Correlation (CC) are examples of members of this class. Thisclass generally can be
written as follows:

E = 1
‖I‖

∑

~i∈I

e(A(~i), Bτ (~i)) =

1
‖I‖

∑

~i∈I

e
(

A(~i), B(~τ(~i))
) (7.14)

Heree denotes the contribution to the similarity measure per spatial element, and
~i ∈ I ⊂ Z

N represents the set ofN -dimensional discrete spatial positions (i.e., pixel
or voxel positions in the image).

The deformation~τ is driven by a set of parameters~cj . It is this set of parameters
that is manipulated by the iterative optimization algorithm. In order to obtain a better
prediction of parameters used in the next iteration, the Jacobian matrix, containing
the partial derivatives of the similarity measure to the parameter spaceδE/δcj,k is
required [147], with indexk denoting the axis. The partial derivative can be decom-
posed into the following product [107]:

δE

δcj,k

=
1

‖I‖

∑

~i∈I

δe(~i)

δBτ (~i)

δB(~x)

δxk

∣

∣

∣

∣

~x=~τ(~i)

δτk(~i)

δcj,k

(7.15)

7.3.2 Deformation field

Similar to Kybic and Unser [107], we use a B-spline driven deformation field. The
deformation field then can be described by the following equation:

~τ(~i) =~i +
∑

j∈Ic

~cj · βn(~i/~h − j) (7.16)

The deformation for position~i is given by~τ(~i). The set of control points~cj , which
drive the deformation, is denoted byIc ⊂ Z

N . Vector~h represents the spacing of the
control points, which is required to be integer. Since~i is added to the sum, the identity
deformation corresponds to all control points being zero.βn(~i) is theN -dimensional
tensor product of an uniform B-spline function, wherebyn indicates the degree of the
B-spline.
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Figure 7.5: The3 ·3 and5 ·5 derivative kernel in x-direction, based on the 1st order derivative
of the cubic B-spline (see fig. 7.2). Larger kernels can be used to obtain derivatives in higher
scales.

Similarity measure Contribution per pixel Derivative

SSD e(~i) = (A(~i) − Bτ (~i))2 δe/δBτ = 2 · (A(~i) − Bτ (~i))

CC e(~i) = A(~i) · Bτ (~i) δe/δBτ = A(~i)

Table 7.2: Sum of Squared Differences (SSD) and Cross-Correlation (CC) similarity measures,
and their derivative with respect to the deformed image.

7.3.3 Derivatives

As can be understood from equation 7.16, the derivative of the deformation field
δτk(~i)/δcj,k simply is a constant term:βn(~i/~h − j). Since the control points are
evenly spaced, a fixed template of widthn · h can be pre-computed to express this
derivative. During the calculation of the derivative, the template is then shifted over
the image, depending on indexj.

In contrast to [107], we do not obtain the derivative of the deformed floating image
analytically. We rather use an image based approach, employing a convolution with
Sobel-like kernels, which approximates the Gaussian derivative. Such a convolution
can be very efficiently implemented to run on the GPU.

The usage of kernels also allows us to determine the derivative at different scales,
by scaling the B-spline derivative:β′

3(x/s). Employing a higher scale allows to
increase the capture range of the optimization algorithm, since the derivative is based
on a wider spatial range [106]. In order to obtain a derivative of the similarity measure
that is fully based on a different scale, the floating and reference image should be
Gaussian blurred. Our first tests show, however, that merelybasingδB(~x)/δxk on a
larger scale, by using bigger derivative kernels (see figure7.5) already results in an
enlarged capture range.

The derivative of the first multiplicand in equation 7.15 depends on the used sim-
ilarity measure. In table 7.2 the derivatives for SSD and CC are given.
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7.4 GPU implementation

7.4.1 Similarity measure & derivatives

The GPU implementation of the similarity measure and the first order derivatives
works as follows: for every voxel in the reference image a thread is started, and its
contribution to the similarity measure and derivatives is calculated. In the thread the
corresponding location in the deformed floating data is obtained by adding the cubic
B-spline driven deformation field to the thread’s voxel coordinate, see equation 7.16.
Hereby, we can make efficient use from the fact that a cubic B-spline lookup can be
decomposed into 8 linearly weighted interpolations, rather than 64 nearest neighbor
lookups, which is much faster on the GPU [13, 59], see sections 7.2.2 and 7.2.3.

When the deformed coordinate has been established, the voxelintensities of the
reference and floating datasets are fetched, and the similarity measure contribution of
the thread can be established, see equation 7.14. The gradient of the floating dataset
and its intensities are stored in a single texture with four entries per voxel. In this
way the interpolated lookup at the deformed coordinate immediately yields the in-
tensity and the gradient of the floating dataδB(~x)/δxk at this particular location.
It should be noted that this gradient image is static during the optimization process,
and therefore needs to be calculated only once for the entireregistration procedure.
The gradient image can easily be obtained on the GPU in a pre-processing step by
convolving the floating image with Sobel-like derivative kernels of size3N for every
axis direction. For a multi-scale approach the3N kernels can be replaced by larger
kernels of size(2 · n + 1)N (see figure 7.5), and the neighbourhood that has to be
sampled, should be enlarged correspondingly. The samplingof the neighbourhood,
especially for large kernels, can be further optimized using the principle described in
equation 7.9.

The derivative of the similarity measure to the control points consists of three
multiplicands, see equation 7.15. Two of those can be established for each GPU
thread; the gradient of the floating dataδB(~x)/δxk with ~x = ~τ(~i), and the derivative
of the similarity measure to the voxel spaceδe/δBτ . The similarity measuree(~i) and
first order derivatives contributions are stored in an intermediate 3D data array for
each thread. The following pseudo CUDA code encapsulates the first pass for SSD:

__global__ void sim_kernel(float4* output, int3 h)
{

int3 coord = thread.coord;
float3 coordf = make_float3(coord) + 0.5f;
float3 offset = interpolate_bspline(deform_coeffs, coordf / h);
float3 deform = coordf + offset;

float4 floating = tex3D(flt_img, deform); //gradient.xyz, image.w
float reference = tex3D(ref_img, coordf);

float diff = reference - temp.w;
//gradient, pre-multiplied by derivative of sim. meas.
output[coord].xyz = 2 * diff * floating.xyz;
output[coord].w = diff * diff; //sim. meas.

}
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In the second pass, the first order derivativesδE/δcj,k are calculated by mul-
tiplying a subset of the previously stored derivative data with the B-spline weights
β3(~i/~h− j). The B-spline weights are constant, and can be decomposed into a tensor
product of three pre-computed 1D arrays of width4·hk. The second pass is illustrated
by the following pseudo CUDA code:

__global__ void coeffs_kernel(float4* output, int3 h)
{

int3 coord = thread.coord;
int3 start = (coord-2) * h;
int3 end = 4 * h; //support of the cubic b-spline

float4 temp = make_float4(0,0,0,0);
for (int z = start.z; z < end.z; z++)
for (int y = start.y; y < end.y; y++)
for (int x = start.x; x < end.x; x++)
{

float tensor = tex1D(tx, x) * tex1D(ty, y) * tex1D(tz, z);
float4 inter = tex3D(intermediate_img, start+(x,y,z));
temp.xyz += tensor * inter.xyz;
temp.w += inter.w;

}
output[coord] = temp;

}

7.4.2 Results

In order to characterize the calculation time of the proposed algorithm, the GPU im-
plementation was compared to a straightforward single threaded CPU implementa-
tion and a multi-threaded SSE optimized CPU version. For allversions we used the
approach that is introduced in the previous section, with loop-unrolling applied to the
inner for-loop of the second pass. We used a 2.33 GHz quad-core Intel Xeon with 2
GB memory and an NVIDIA GeForce GTX 260 with 896 MB memory to perform
our measurements. The reference and floating data was obtained by deforming a CT
dataset according to a B-spline field of163 randomly determined control points in the
range [-8, 8] and adding some white noise.

We measured the time to obtain the similarity measure and first order derivatives
by performing a quasi-Newton driven optimization in 40 iterations, and averaging the
time per iteration. In order to bring the figures in the same range for different dataset
sizes (ranging from323 voxels to2563 voxels) we divided the time per iteration by
the number of voxels in the reference and floating dataset, see figure 7.6. It can be
concluded that the time per voxel depends somewhat on the amount of control points,
and not very much on the dataset size.

On our quad-core machine the multi-threaded SSE algorithm performed best
when using four threads (figure 7.7 left), which we used for all our other measure-
ments. The speedup factor of the GPU version compared to the other two imple-
mentations is illustrated in figure 7.7 right. The boxplots in figure 7.8 were obtained
by comparing the time per iteration for similar datasets sizes and amount of control
points. They show the median, and the distribution of the speedup factors.
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Figure 7.6: The graphs show the amount of time (in nanoseconds) that is spend pervoxel,
when calculating the similarity measure and first order derivatives for a given transformation.
The y-axis indicates the time, and the x-axis the amount of B-spline transformation control
points. The lines in the graphs correspond to different dataset sizes. The top graph shows
the measurements for the straightforward CPU version, the middle graph represents the multi-
threaded SSE implementation, and the bottom graph the GPU version. Note that the scale
and range of the y-axis is different. The measurements fore.g., 1283 control points show a
performance improvement for the GPU of a factor 100 over the CPU implementation.
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Figure 7.7: The left graph shows the calculation time per iteration (y-axis, in milliseconds)
for the SSE implementation, using different amount of threads (x-axis). Four threads provide
the maximal use of processing resources at the least amount of overhead on the quad-core
machine. The right graph represents the calculation time per iteration (in milliseconds, loga-
rithmic scale) for different dataset sizes, using163 B-spline control points, for the three imple-
mentations.
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Figure 7.8: The boxplots show the speedup factor distribution when comparing the various
implementations. The left one represents the speedup factor distribution of the multi-threaded
SSE implementation over the single-threaded straightforward CPU version.The middle shows
the speedup of the GPU over the multi-threaded SSE version. The right boxplot illustrates the
speedup of the GPU over the single-threaded straightforward CPU version.

When we dissected the time per iteration into the time used forthe first and second
pass (see table 7.3), we discovered that the GPU version spends considerably more
time in the second pass than in the first pass.

7.4.3 Discussion

In practise, a good approach has proven to start the registration in low resolution with
few control points to find large deformations, and to gradually refine the registration
by moving to higher resolutions and more control points [148]. Let us considere.g.,
a registration that first performs 20 iterations at a resolution of 643 with 83 control
points, then 10 iterations at1283 with 163 control points, and finally 5 iterations at
2563 with 323 control points. The straightforward CPU version would take329 sec-
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Implementation Pass 1 Pass 2 Overhead

SSE 536.8 ms 474.2 ms 3.1 ms
GPU 9.6 ms 128.8 ms 1.5 ms

Table 7.3: Distribution of the time per iteration over the passes, using datasets of1283 voxels
and163 control points.

onds (5.5 minutes) to perform this registration, the multi-threaded SSE version costs
31.2 seconds, and the GPU implementation takes 7.4 seconds.Five minutes is un-
acceptable for many interventional and surgical applications, 31.2 seconds becomes
an issue when the registration has to be performed multiple times (to compensate for
progressively deforming of the brain), while 7.4 seconds isquite acceptable.

7.5 Conclusions

This chapter described how intensity based elastic registration algorithms, using a
B-spline deformation model, can be implemented efficientlyto run on the GPU. The
various aspects of an efficient and accurate approach to cubic B-spline deformation
on the GPU were discussed, and the accuracy issues that may arise when the GPU
is used for this task were examined. Further, it was demonstrated how the similarity
measure, as well as its derivative, can be calculated by the GPU, using a two-pass
solution. Also it was indicated how a multi-scale approach of the derivative can help
to enlarge the capture range, when employing quasi-Newton like optimizers.

In order to characterize the calculation time of the proposed algorithm, the GPU
implementation was compared to a straightforward single threaded CPU implemen-
tation and a multi-threaded SSE optimized CPU version. As test data eight different
cone-beam CT datasets of the head of patients with either arterio-venous malforma-
tions or aneurysms were used. The time to obtain the similarity measure and first
order derivatives was measured by performing a quasi-Newton driven optimization
in 40 iterations, and averaging the time per iteration. In order to bring the figures
in the same range for different dataset sizes we divided the time per iteration by the
number of voxels in the datasets.

It can be concluded that the timeper voxeldepends somewhat on the amount
of control points, and not very much on the dataset size. On average a speedup
factor of 50 compared to the straightforward CPU implementation and a factor of
5 with respect to the multi-threaded SSE version was reached. When these perfor-
mance figures are projected on a realistic calculation scenario, we can conclude that
the straightforward CPU implementation is too slow for habitual application during
surgery. The multi-threaded SSE approach is suitable for singular use during the in-
tervention, while the GPU version is considered fast enoughfor multiple usage to
correct for progressive deforming of the treated anatomy.





Chapter 8

Vesselness-based 2D-3D
Registration

This chapter is an extended revision of the following paper:

• Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetens. Vesselness-based 2D-3D registra-
tion of the coronary arteries.International Journal of Computer Assisted Radiology and Surgery,
Volume 4, Number 4, June 2009, pp. 391-397. doi:10.1007/s11548-009-0316-z

8.1 Introduction

In this chapter we propose a new method for registering the coronary vessel tree in
intra-operative X-ray angiography images to a 3D model of the coronary vasculature,
which has been obtained from a pre-operative CTA dataset. When such a registration
has been established, a fused visualization of the real-time X-ray image stream and
the 3D CTA data can be displayed, which is very useful for guidance of intra-vascular
devices, such as catheters, during the minimal invasive treatment of coronary artery
disease (CAD). Especially for chronic total occlusion (CTO) of a coronary artery,
this procedure has great clinical benefit, since the occluded part of the artery, which
is practically invisible in the X-ray image, still can be depicted in the CTA dataset.
The objective of the 2D-3D registration algorithm is to find aspatial mapping between
the 2D and the 3D images.

8.2 Related work

2D-3D image registration has a number of clinical applications, such as radiotherapy
planning and verification [149–152], surgery planning and guidance [123, 153–155],
and minimal invasive vascular treatment in coronary artery[127], peripheral [123,
125, 156] and neuro-interventions [157–162].

Most algorithms for 2D-3D image registration can be classified as either intensity-
based or feature-based. Intensity-based methods [123, 125, 129, 153, 159, 163–170]
directly use the pixel and voxel values to calculate a similarity measure, and require
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no or little segmentation. Feature-based methods [124, 151, 155, 158, 161, 162, 171–
175] are based on a segmentation of landmark features in the images. Once this
segmentation has been obtained, the registration step can be performed quite fast. The
segmentation, however, is not always trivial or robust, anderroneous segmentations
can lead to erroneous registrations.

Due to their tubular structure, vessels occupy a relativelysmall fraction of the im-
age, which especially poses a hurdle in intensity-based image registration. Therefore
feature-based registration has received particular interest for vascular 2D-3D regis-
tration. Many feature-based methods are based on the iterative closest point (ICP)
approach [15], which relies on minimizing the sum of minimaldistances between the
feature points in the reference and projected image. Fitzgibbon [114] has shown that
the distance transform can be used in ICP-like registration, in order to improve its ef-
ficiency. This approach has been applied [161, 162] to register the neuro-vasculature
by segmenting the vessel tree in the 2D and the 3D image and applying a stochastic
optimization strategy.

8.3 Method

8.3.1 Spatial mapping

In section 6.6 it has been shown how the three dimensional space is projected on the
detector image of an X-ray C-arm. This projection could be expressed in a single
matrix M . In order to bring a CT dataset into this three dimensional space, we need
to establish the relation between the CT frame of reference and the C-arm space, and
to incorporate this relation into the projection matrixM ′.

The transformation from the frame of reference of the CT dataset to the iso-centric
X-ray coordinate frame can be decomposed into two a-priori known relations and an
unknown part. The DICOM header of the CT data already tells ushow the patient
was oriented with respect to the CT data. We also know how the patient is oriented
with respect to the X-ray equipment (e.g., head first, nose up). Furthermore, the
patient is typically positioned to have the center of the anatomy of interest (e.g., the
coronary arteries) approximately at the iso-center of the X-ray C-arm equipment. The
accuracy of this information is quite limited, but it allowsfor a coarse initialization of
the spatial mapping and reduces the search space of the registration process. The fine
tuning is represented by the unknown part, and it is the objective of our registration
algorithm to find a more precise mapping.

Matrix O expresses the a-priori information. The rotational part ofthis matrix
is extracted from the DICOM information of the CT data. The translational part
is established such that the center of the coronary vessel model in the CT dataset
corresponds to the iso-centric origin of the X-ray coordinate frame.

Matrix T is the rigid registration matrix, which is manipulated during the opti-
mization process. It should be noted that we do not perform a calibration of the X-ray
equipment to correct for deviations of parameters delivered by the system, since these
deviations are found to be smaller than the deformations that occur due to the cardiac
and respiratory motion. Furthermore we rely on the registration process to correct
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also for the system inaccuracies.
The complete transformationM ′ of a point in the frame of reference of the CT

data to the X-ray detector space is an extension of equation 6.5 and can be expressed
by:

M ′ = P · T · R · O (8.1)

We deliberately put matrixT between matricesP andR, because in this way its axes
are aligned with the axes of the X-ray detector. This is of importance, since the trans-
lation perpendicular to the detector (z-axis of the detector) only leads to perspective
zoom, which is very difficult to estimate accurately for deforming structures such
as the coronary arteries of a beating heart. Therefore, we rather do not change this
z-translation in the image-based registration process.

8.3.2 Vesselness filter

The vesselness filter plays a central role in the registration method that is being de-
scribed in this chapter. The vesselness filter expresses thelikelihood that a particular
pixel can be contributed to a vessel-like structure. As suchit can be regarded as a
fuzzy segmentation. In our experiments we apply a multi-scale vesselness filter, as
proposed by Frangi [14], which will be briefly described in this section. Note how-
ever that our similarity measure is not restricted to this particular vesselness filter,
but can use any filter that enhances the vascular structures and suppresses any other
structure in the image.

The vesselness filter seeks to enhance tube-like structuresin the image. These
structures are identified using the eigenvalues of the Hessian matrixH. This matrix,
which contains the second order derivatives of the imageL, can be written for the 2D
case as:

H =





δ2L
δx2

δ2L
δxδy

δ2L
δyδx

δ2L
δy2



 (8.2)

Now let λ1 and λ2 be the eigenvalues of the Hessian matrixH, and let them
be ordered such that|λ1| ≤ |λ2|. When |λ1| is small and|λ2| large, a ridge is
encountered, which is a good indicator for a tube-like structure. When|λ1| and|λ2|
are of similar magnitude, the encountered structure is a ‘blob’, which is not a property
of vessel structures. To capture these properties, the ‘blobness’ is defined as:

RB =
λ1

λ2
(8.3)

Furthermore, the ‘structureness’ of the image is taken intoaccount, which is defined
as:

St = ||H||F =
√

λ2
1 + λ2

2 (8.4)

This term produces a high response when there are a lot of image features present,
and a low response for areas with few features (background).
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Using these properties, the vesselness is defined as:

V =

{

0, λ2 ≥ 0

exp
(

−RB
2

2β2

) (

1 − exp
(

−
S2

t

2c2

))

, λ2 < 0
(8.5)

The parametersβ andc can be tuned to change the sensitivity of the filter.
To take the various sizes of the vessels into account, the filter is applied in several

scales. The different scaless are obtained by defining the differentiation used for the
Hessian matrix at each pixel location~i as a convolution with derivatives of a Gaussian
of variable width:

δ

δx
L(~i, s) = L(~i) ∗

δ

δx
G(~i, s) (8.6)

with the two-dimensional Gaussian at scales defined as:

G(~i, s) =
1

2πs2
e−

||~i||2

2s2 (8.7)

The overall vesselness is then assembled from the vesselness at different scales:

V(~i) = maxs

(

V(~i, s)
)

(8.8)

8.3.3 Similarity measure

In order to obtain a 3D model of the coronary vessels, they aresegmented in the
pre-operative 3D CTA datasets. There are good algorithms available for this task
(e.g., [176–179]). Furthermore, it is not necessary to exclude manual interaction,
since this segmentation can be performed pre-operatively,when there is less time-
pressure and stress. A reliable and robust segmentation of the 2D X-ray angiography
images can be more challenging, because of the projective nature of these images.
Also, due to the intra-operative acquisition of the X-ray images manual interaction
or correction is not desirable. To overcome these limitations we introduce a method
which does not require an explicit segmentation of the 2D X-ray image.

We perform a distance transform (DT) on the projected 3D model in each iteration
of the optimization process. The fact that the DT is calculated in every iteration differs
from DT-based ICP, where the points of the 3D model are projected on a static DT of
the segmented 2D image. It is necessary to recalculate the DT, because the pose of
the 3D model changes in each iteration. The Distance Transform computes for each
pixel position~i the distance to the nearest feature point~q in a set of feature pointsΩ,
which is the set of projected 3D points in our case:

DT (~i) = min~q∈Ω‖~q −~i‖ (8.9)

To achieve a rapidly declining distance weighting functionD that yields only a
high response close to the feature points, the squared DT is subtracted from a constant
valuec (see figure 8.1):

D(~i) = max
(

0, c − DT (~i)2
)

(8.10)
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(a) (b)

Figure 8.1: (a) Inverted Distance Transform of the projected coronary vessels in the 3D CT
dataset. (b) Inverted Squared Distance Transform, see equation 8.10.

(a) (b)

Figure 8.2: (a) X-ray image of the coronary arteries. (b) Vesselness transform of the X-ray
image.
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A vesselness filterV, as described in section 8.3.2, is applied to the 2D X-ray
image (see figure 8.2). Our similarity measure can then be expressed as the sum of
the product of the distance weighting functionD and the vesselnessV over all pixels
in the image:

S =
∑

~i∈I

D(~i) · V(~i) (8.11)

8.3.4 Optimization strategy

The search space, consisting of the multi-dimensional control variables of the spatial
mapping, is determined by two degrees of translational and three degrees of rota-
tional freedom (rigid registration). The process of projecting 3D data on a 2D plane
implies a considerable reduction of information. As a result there are many incor-
rect transformations that yield a relatively good similarity measure (e.g., projecting
not corresponding vessel branches on each other), and form alocal optimum in the
search space.

We use a stochastic optimization approach, since such approaches are less likely
to get stuck in a local optimum. The used optimization strategy uses a population of
samples in the search space. In every iteration of the optimization algorithm then
best samples are taken, and they each createm new samples. Them ‘children’ of
a sample are randomly generated according to a Gaussian normal distribution. The
standard deviationσ of the normal distributed random samples is multiplied with
a reduction factorr for each iteration, since we assume that the global optimum is
closer as we progress.

The initialσ can differ for each dimension of the search space. In our casewe use
a significantly smallerσ for the three rotation variables than for the three translation
variables, since we can perform already a quite good estimation for the rotation of
the 3D model, based on the DICOM information of the CT data, and the viewing
incidence of the X-ray C-arm system.

8.4 Results

We evaluated the presented similarity measure with respectto accuracy and cap-
ture range, comparing it against ICP-based registration. As optimization strategy a
standard Powell optimizer and the stochastic optimizationstrategy described in sec-
tion 8.3.4 were used.

The accuracy and capture range was assessed using simulateddata. In order to do
this, the coronary arteries were segmented from a real cardiac CT data set, as well as
the heart mask. From this CT dataset a Digitally Reconstructed Radiograph (DRR)
was constructed, which simulates an X-ray projection of theCT data. In angiographic
X-ray images the contrast medium is injected intra-vascularly, while the cardiac CT
images are obtained with intra-venously administered contrast medium. Therefore,
the DRR was generated with different X-ray attenuation coefficients assigned to the
different segments, see figure 8.3. The registration process is then started with a given
offset translation and rotation. The advantage of the simulated data is the fact that the
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(a) (b) (c)

Figure 8.3: (a) Segmented cardiac CT dataset. (b) A Digitally Reconstructed Radiograph
(DRR) of the same dataset. (c) A DRR, using different X-ray attenuation coefficients per seg-
ment, simulating X-ray angiography.

gold standard transformation is known, and therefore the error of the registration
process can be quantified, see table 8.1.

Using the simulated data, we established a maximum capture range of 14.1 mm
translation and 5.2◦ rotation for the ICP-Powell combination, whereby the capture
range is defined as the set of initial translations and rotations with respect to the gold
standard that still yield a successful registration. The vesselness-Powell combination
delivered a capture range of 43.8 mm and 22.1◦ respectively, and the vesselness-
stochastic combination reached 71.1 mm and 20.3◦. The average calculation time
for the ICP method was only 82 ms, while vesselness-Powell combination took 2.7
seconds and the vesselness-stochastic combination calculated for 11.0 seconds.

We further investigated the capture range using clinical data from four pairs of
2D X-ray images and 3D coronary vessel trees, segmented fromcardiac CT data. It
should be mentioned that it is impossible to establish an objective gold standard for
such real world data, especially since the cardiac phase might differ somewhat for
the 2D and 3D images of the pair. Therefore we proceeded in thefollowing way: A
large number (about 30 per dataset pair) of registrations were started from different
starting positions (translation and rotation). The resulting transformation was then
labelled either as ’successful’ or ’erroneous’ by an expert. The largest successful
registration in sense of translated distance and rotated angle was taken as a measure
for the capture range, see table 8.2.
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Sim.meas. ICP Vesselness Vesselness
Optimizer Powell Powell stochastic

Translation (mm) x̄ = 1.44, σ = 1.50 x̄ = 0.42, σ = 0.12 x̄ = 0.54, σ = 0.47

Rotation x̄ = 1.31◦, σ = 1.00◦ x̄ = 0.70◦, σ = 0.77◦ x̄ = 1.06◦, σ = 1.00◦

Table 8.1: Residual error of a successful registration, measured using simulateddata. The same set of initial transformations was used for all methods.

Sim.meas. ICP ICP Vesselness Vesselness
Optimizer Powell stochastic Powell stochastic

Pair 1 0.0mm, 0.0◦ 7.8mm, 8.72◦ 83.3mm, 21.7◦ 76.9mm, 40.3◦

Pair 2 21.8mm, 17.5◦ 33.1mm, 16.6◦ 68.7mm, 31.9◦ 62.0mm, 41.5◦

Pair 3 12.9mm, 25.2◦ 11.2mm, 14.5◦ 49.7mm, 23.8◦ 60.8mm, 37.3◦

Pair 4 12.1mm, 11.0◦ 20.2mm, 15.2◦ 30.8mm, 30.3◦ 71.0mm, 51.7◦

Table 8.2: The maximum capture range was established using clinical datasets.
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8.5 Discussion

In this chapter a novel feature-driven 2D-3D registration method has been introduced.
This method is based on the iterative stochastic optimization of our similarity mea-
sure, which relies on the 3D coronary vessel model, obtainedfrom a cardiac CT
dataset, and a 2D X-ray image of the coronary arteries. The similarity measure is
obtained by applying a vesselness filter to the 2D image, and then weighting it with a
function based on the squared distance transform of the projected 3D vasculature.

It has been demonstrated that this similarity measure outperforms the Iterative
Closest Point (ICP) method, both in sense of capture range and reliability. This can
mainly be contributed to the fact that we do not perform an explicit binary segmen-
tation of the vessel structures in the 2D X-ray image. This segmentation was rather
trivial in many other publications, mainly dealing with Digital Subtraction Angiogra-
phy (DSA) images (e.g., [174, 175]), which are not available for the coronary arteries
due to the heart and respiratory motion. In our approach an explicit segmentation is
avoided by using directly the vesselness image in our similarity measure. Further-
more, the squared distance transform guarantees that only vessel structures close to
the projected centerlines contribute to the similarity measure, while it is wide enough
to maintain a large capture range.

It has been shown that the stochastic optimization approachenlarges the capture
range, since it is not likely to get stuck in a local optimum far from the global op-
timum. Future work might include evaluating other stochastic global optimization
strategies, ase.g., proposed by Kennedy and Eberhart [180].

The test results have shown that the proposed registration approach can be cal-
culated rather quickly, yielding calculation times similar to distance transform based
ICP. The efficiency is reached by the limited extent of the squared distance transform,
which can be calculated within far less iterations than a regular distance transform.
The multi-scale vesselness filter, which is rather expensive to calculate, only needs
to be obtained once for the entire registration process, andtherefore does not pose a
significant bottleneck.

When we started our search for a 2D-3D registration approach for the coronary
arteries, we quickly abandoned intensity-based methods, because of their limited cap-
ture range for registration of vessel structures (intensity-based methods work best
when there are large overlapping landmark areas, which is not a property of the vas-
culature). After initially disappointing results with feature-based registration, using
a binary segmentation of the vessels in the 2D image, we developed the novel and
robust approach sketched in this chapter. Our test results show that it performs very
well for the task of 2D-3D registering of the coronary vesseltree.
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Chapter 9

Real-time 3D Multimodality
Fusion in Neuroangiography

This chapter is partially based on the following papers:

• Daniel Ruijters, Marijke Vermeer, Anna Vilanova, and Paul Suetens. Robustness of Mutual Infor-
mation Based Intra-Operative Registration.First Annual Symposium of the IEEE/EMBS Benelux
Chapter,December 7-8, 2006, Brussels (Belgium), pp. 171-174

• Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mielekamp, Bart M. ter Haar Romeny,
and Paul Suetens. 3D Multi-modality Roadmapping in Neuroangiography.Proceedings of SPIE
- Volume 6509, Medical Imaging 2007: Visualization and Image-Guided Procedures,February
2007, San Diego (USA), pp. 65091F. doi:10.1117/12.708474

• Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mielekamp, Bart M. ter Haar Romeny, and
Paul Suetens. Real-time integration of 3-D multimodality datain interventional neuroangiography.
Journal of Electronic Imaging,Volume 18, Issue 3, July-September 2009.
doi:10.1117/1.3222939

9.1 Introduction

To the present date, the fluoroscopic image with the live information about endovas-
cular interventional devices, and soft-tissue images (such as CT or MR) are visualized
on separate displays. This means that the clinician has to perform a mental projection
of the position of the endovascular device on the soft-tissue data. It may be clear
that a combined display of this information is of great advantage, since it reliefs the
clinician of performing this task. Furthermore, a fused image allows more precise
navigation of the endovascular devices, since these devices are visualized together
with pathologies and contextual information, present in the soft-tissue data. In order
to provide the maximum benefit of such an augmented image, thelive fluoroscopy
data and the soft-tissue data have to be combined in real-time, with low latency and a
sufficient frame rate (15 or 30 frames per second, depending on the acquisition mode).
Since the visualization is targeted at the usage during an intervention, it should not
only be fast, but also easy to interpret and the manipulationof the image should be
interactive and easy to use.
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9.2 Method

9.2.1 Pre-processing

Our approach relies on the acquisition of a 3DRA dataset at the beginning of the in-
tervention. The 3DRA dataset is co-registered to a soft-tissue dataset, such as CT
or MR, which has been obtained prior to the intervention (e.g., for diagnostic pur-
poses). Using 3D image registration during interventionaltreatment poses a number
of constraints on the registration algorithm. Especially,the calculation time of the
algorithm has to be limited, since the result of the registration process is to be used
during the intervention. In order to reduce the calculationtime, the GPU is employed
to accelerate the registration algorithm [181, 182].

3DRA reconstructions may have a very high spatial resolution (a voxel can be as
small as 0.1 mm), but tend to be rather noisy in the dynamic range, see section 2.4.
To reduce the sensibility to noise we use a limited number (16-32) of grey level bins
for the 3DRA dataset. As a result of the limited dynamic range, the vessels, bones
and sinuses are the only structures that are well delineated, and can serve as land-
marks. The registration process is primarily determined bythe facial structures, such
as the eye sockets, the nose, the sinuses, etc. It is therefore of importance that such
structures are contained both in the 3DRA dataset, as well asthe soft-tissue dataset,
see figure 9.1.

(a) (b) (c)

Figure 9.1: (a) A slice out of a 3DRA dataset, showing the limited dynamic range. The visible
anatomy are the sinuses, the skull, and a contrast medium filled aneurysm. (b) A CT dataset,
containing the facial structures. (c) A CT dataset, missing a major part of the facial structures,
which hinders the registration process.

Since we focus on cerebral applications, and there are only limited elastic trans-
formations of the anatomical structures within the head, wecan use a rigid registration
(i.e., only a global translation and rotation, see chapter 6). Rigid registration further
has the property that it can be calculated relatively robustand fast. Typically, a reg-
istration algorithm consists of a multi-dimensional similarity measure, indicating the
quality of a given spatial mapping, and an optimization algorithm, which searches
the optimum (maximum or minimum, depending on the measure) of the similarity
measure. The search space consists of the control variablesof the similarity measure,
which are in the case of rigid registration: translation in thex-, y- andz-direction,
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and rotation around thex-, y- andz-axis. We use Mutual Information as similarity
measure, as described by Maeset al. [109], because it performs very well on inter-
modality registration and does not demand any a-priori knowledge of the datasets.
In order to further limit the calculation time, we employ thePowell algorithm [116]
as optimizer, which is a so-called local optimizer. Local optimization algorithms
are generally faster than global optimizers, but they do notguarantee that the over-
all optimum is found. To assure that the correct optimum is found, the image-based
registration is preceded by an optional rough manual registration, which is to be per-
formed by the clinician. Note that this pre-processing stephas to be performed only
once.

A further pre-processing step forms the creation of a triangulated mesh, represent-
ing the vessel tree. In order to obtain such a mesh, the vessels are segmented in the
3DRA volume, which is a fairly easy task since the iodine contrast medium absorbs
more X-ray than any other substance present in the dataset. From the segmented data
a mesh is extracted by applying the marching cubes algorithm[183].

9.3 Clinical use

In order to visualize the data the techniques described in chapter 4 are being used.
The availability of the live fluoroscopy image stream, combined with the vasculature
segmented from the 3DRA dataset and the registered soft-tissue (CT or MR) dataset,
during the intervention is of great clinical relevance. Thecombination of the fluo-
roscopy image with the 3DRA vessel tree provides the advantage that the guide wire
and catheter position can be located with respect to the vessel tree, without additional
contrast injection (see figure 4.5d), while the C-arm position and the X-ray source to
detector distance can be altered freely [131]. Even duringe.g., rotations of the C-arm,
the machine-based 2D-3D registration will always be up to date, see section 6.6. The
additional visualization of the soft-tissue data allows tocorrelate the position of the
guide wire and catheter to pathologies which are only visible in the soft-tissue data.
Especially the fact that this information is available in real-time makes it very suitable
for navigation.

The slab with the soft-tissue data can be moved, its width canbe changed and its
orientation can be rotated freely, to visualize different parts of the anatomical dataset.
In this way the optimal view of a certain pathology can be determined. The imple-
mentation of the rendering, running on the GPU offers interactive speed throughout.

The integration 3D multi-modality data can be used in the following treatments:

• Navigation to the optimal position for intra-arterial particle injection in en-
dovascular embolization of intracranial neoplastic tissue, and arteriovenous
malformation (AVM) treatment, prior to stereotactic radiation surgery.

• Navigation to the optimal position for intracranial stenting in cases where aneurysms
are pressing on surrounding eloquent and motoric brain tissue.

• Navigation in the vessel portions to be embolized ine.g., hemorrhagic stroke.
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• Navigation in the vessel segments where thrombolytic therapy should be ap-
plied ine.g., ischemic stroke or vascular vasospasms.

9.4 Results

9.4.1 Robustness

In order to validate the applicability of our registration approach in the clinical prac-
tice, we investigated the capture range of the GPU-accelerated automatic registration
algorithm, using clinical data. In this context we defined the capture range as the
extent of the parameter search space that can serve as start position for the optimizer,
and still evolves to a correct spatial transformation between the datasets, see chapter
6. If this extent is too small, the manual pre-registration becomes too cumbersome
and time-consuming to be performed during an intervention.

First we determined a gold standard transformation for every dataset pair. This
was done by manually defining a starting position that was sufficiently close to the
correct transformation, and then let the registration algorithm run. The results were
then visually inspected, to assure that the transformationwas indeed correct. All gold
standard transformations were of sub-voxel accuracy.

To establish the range of the search space where the algorithm behaves robustly,
we made the following assumption: if a registration process, started from a translation
in a certain direction, evolves to the gold standard transformation, each registration
attempt from a smaller translation in the same direction is also assumed to lead to
the gold standard transformation,i.e., the capture range is convex without any holes.
Hereby two transformations were considered to be the same ifeach of the components
of the rotation matrix differ less than a particularδR (we usedδR = 0.05), and the
translation differs less thanδT (we usedδT = 0.5 mm).

Based on this assumption, the robust translation extent wasdetermined, using
an approach, similar to a binary search [184]; The gold standard transformation was
applied to the datasets, and one dataset was translated in a certain direction~d, with |~d|
being of unit length. If performing the registration process indeed leads to the gold
standard transformation, the process was repeated with thetranslation vector doubled.
If not, the translation vector was halved. This process was continued until a bounding
interval(b1, b2), with b1 < b2, was found, whereby a translation ofb1 still was within
the capture extent, andb2 not. Then, iteratively a new limitb = (b1 + b2)/2 was
tested. If a registration started from a translation with vector b · ~d evolved to the gold
standard transformation,b was within the capture range, andb1 was set tob for the
next iteration. Otherwiseb2 was set tob. In this way the accuracy of the boundary of
the capture range was doubled (the uncertainty was halved) in every iteration.

The iterative process was continued until the boundary of the capture range was
found with an accuracy of 5 mm. Using this method, the robust translation range
was determined for every patient in 14 distinct directions (see figure 9.2). A similar
scheme was used to determine the robust rotation extent around thex-, y- andz-axes
in both directions. The robust rotation range was determined with a precision of 1◦.

The capture range with respect to translation and rotation were determined for



9.4 Results 107

12
3

4

5

6

7

8 10 

9
11 

12 

13 

14 

Figure 9.2: The translation of the datasets was tested in all 14 depicted directions.

dataset pairs obtained from 11 patients; 7 patients with a 3DRA-CT dataset pair,
and 4 patients with a 3DRA - MR pair. 88% of the CT datasets can be registered
correctly when the registration process is started within 30 mm translation to the
gold standard transformation with the 3DRA dataset, see figure 9.3. 67% manage to
robustly register within 50 mm translation. The results we obtained are comparable,
or slightly better than published by Stancanelloet al. [185]. The results of starting the
registration process with the datasets rotated to each other, is illustrated in figure 9.4.
88% still of the CT datasets can be registered correctly to the 3DRA dataset when the
rotation is 20◦, 74% when the rotation is 30◦.

The results for the 3DRA-MR dataset pairs are shown in figure 9.5. Unfortunately
not all MR datasets fulfilled the criteria that were described in section 9.2.1 (not
enough landmark regions present, slices too far apart). However, more than 60% of
the registration attempts still succeed when the translation is 10 mm.

The accuracy of the calibrated machine-based 2D-3D registration was measured
on five Philips Allura C-arm X-ray angiography systems. The registration was least
accurate at the corners of the 3DRA reconstruction volume. The maximal deviation of
the 2D fluoroscopy image and the projected 3DRA image was 0.4 mm at the corners
of the reconstruction volume, and the average deviation at this location was 0.2 mm,
which is well within the clinically acceptable range.

9.4.2 Computation time

The GPU implementation of the Mutual Information based registration algorithm
takes less than 8 seconds to register the 3DRA dataset and thesoft-tissue dataset in
the pre-processing step. The extraction of the mesh that represents the vessels, the
another pre-processing step, costs 300 ms. Overall it can beconcluded that these
figures are very acceptable and do not hinder the interventional procedure, especially
since the pre-processing step has to be performed only once.

Given a certain set of viewing incidence angles, it takes a mere 1.5µs to calculate
the matrix, which expresses the 2D-3D registration betweenthe 3DRA dataset and
the fluoroscopy image. It is important that this part can be calculated in real-time,
since it should be updated on-the-fly when the geometry pose of the X-ray C-arm
system changes. The augmented visualization, consisting of a mesh extracted from
a 2563 voxel 3DRA dataset, a Volume Rendered slab from a2562 · 198 voxel CT
dataset and the fluoroscopy image stream, can be displayed atan average frame rate
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Figure 9.3: The percentage of 3DRA-CT dataset pairs that can be registered correctly, for a
given initial translation. The upper line shows the results if the two most difficult to register
patients are not taken into account. The lower line indicates the results for all patients.
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Figure 9.4: The percentage of 3DRA-CT dataset pairs that can be registered correctly, for a
given initial rotation. Upper line: without the two most difficult to register patients. Lower
line: the results for all patients.
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Figure 9.5: The percentage of 3DRA-MR dataset pairs that can be registered correctly, for a
given initial translation.
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of 38 frames per second. All figures were measured on a Xeon 3.6GHz machine
with 2 GB of memory, and a nVidia QuadroFX 3400 graphics card with 256 MB of
memory, using the datasets that are depicted in figure 4.5.

9.5 Discussion

Being able to see the live fluoroscopy image within the context of the 3D vasculature
and soft-tissue information is of great clinical relevance. The combination of the
fluoroscopy image with the 3DRA vessel tree adds value, sincethe guide wire and
catheter position can be located with respect to the vessel tree without additional
contrast injection (see figure 9.6b and 9.6c), while the C-arm position and the X-ray
source to detector distance can be altered freely. Even during rotations of the C-arm,
the machine-based 2D-3D registration will always be up to date. The clinical interest
of this so called 3D-roadmapping has been described before [131]. The additional
visualization of the soft-tissue data, allows correlatingthe position of the guide wire
and catheter to anatomical information and pathologies which are only visible in the
soft-tissue data. The fact that this information is available in real-time, makes it
especially suitable for navigation.

The addition of soft-tissue visualization to the 3D-roadmapping technique, and
especially high-quality MR datasets, brings extra information that may be important
for the operators decision making and increase safety during the procedure as well
as shorten the operating time. In embolisations of brain arteriovenous malformations
(b-AVMs) or intracranial tumors using liquid adhesives or particles, the exact posi-
tion of the catheter tip is crucial. The obvious goal is to embolise the pathological
structures and avoid spilling over to normal vessel supplying normal brain tissue. The
complicated vessel anatomy can in these situations be difficult to comprehend and the
3D multimodality roadmapping may in such instances prove tobe of great value, es-
pecially since the 3D volume is possible to freely rotate with controls located at the
interventional table. The technique may also be of great assistance for targeting areas
of a b-AVM that are to be partially embolised thereby avoiding so-called piece-meal
embolisation, as well as for avoiding high risk treatment close to eloquent areas of
the brain. The exact position for delivery may also be important for intra-arterial de-
livery of other compounds i.e. cytostatic agents for tumors, growth factors for stroke
and degenerative brain disorders, a field that at the moment is largely developing and
growing.

The morphological MR or CT dataset holds the soft-tissue structures relevant
to the procedure as well as some pathological processes thatmay not be visible in
the 3DRA or fluoroscopy data. The most relevant parts of the soft-tissue data can
be visualized by choosing a slab (see figure 9.6), whose location, orientation and
thickness can be interactively altered by the operator at any time. Alternatively, it is
possible to select a representation of the soft-tissue data, whereby an octant, quarter,
or half is cut open (see figure 9.7). The location and orientation of the intersection
can be interactively changed. The 3D-3D registration, which was calculated in the
first pre-processing step, is applied to the position of the soft-tissue data.
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(a) (b)

(c) (d)

Figure 9.6: (a) An MR image, showing an AVM and impacted brain tissue, indicated by the
yellow arrows, (b) the live fluoroscopy image without contrast medium shows the guide wire,
but does not reveal its relation to the vasculature and the soft-tissue, (c) the fluoroscopy image
mixed with the vessel tree from the 3DRA dataset adds the vascular contextto the live data,
(d) the fluoroscopy image, the 3DRA vasculature and a slab from the MR data. The MR slab is
positioned parallel to the view port at the guide wire tip.
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(a) (b)

Figure 9.7: (a) A quarter is cut out of a soft-tissue dataset, while the 3DRA vessels areover-
layed with the live fluoroscopy information, (b) a zoomed fragment of the leftimage, showing
the micro guide wire.

9.6 Conclusions

In this chapter the application of fusing real-time fluoroscopy, 3DRA data and soft-
tissue data into a combined image, and its usage within neuro-endovascular proce-
dures has been presented. The combination of the fluoroscopic image with the 3DRA
vessel tree, known as 3D-roadmapping, offers the advantagethat the spatial relation-
ship between the endovascular device and the surrounding vessel morphology can be
determined, without additional contrast injection, whilethe position of the C-arm ge-
ometry can be altered freely. The method is especially targeted at the use in minimally
invasive vascular procedures, and distinguishes itself inthe fact it adds contextual in-
formation to the fluoroscopy images and 3D vasculature.

The steps necessary to achieve this visualization have beendescribed. First an
image-based registration of the 3DRA dataset and the soft-tissue dataset has to be
performed. We have demonstrated that the capture range is sufficient for interven-
tional usage, and that due to the acceleration by the graphics hardware, the calcula-
tion time is very limited. The machine-based registration between the fluoroscopy
image and the 3DRA data only depends on the geometry incidence angles, the X-ray
source to detector distance and the calibration data. It canbe easily calculated in
real-time. Also we described how the visualization can be implemented to employ
the possibilities of modern off-the-shelf graphic cards, allowing real-time display of
the registered data with the live fluoroscopy image stream. Further possible clinical
applications have been identified, and it has been demonstrated how the presented
method can be employed in those applications.

The strength of the described approach lies in its real-timenature, which is pri-
marily achieved by the on-the-fly 2D-3D registration, and the GPU-accelerated fused
visualization. The interactive real-time aspect contributes to the 3D perception of
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the anatomy and pathologies during an intervention. The clinical feedback has been
very positive; the 3D roadmapping technique is considered avaluable method for ac-
curate navigation and helps to reduce x-ray dose and use of harmful iodine contrast
agent [131, 186]. A possible disadvantage of the present method is the fact that pa-
tient motion will render the 2D-3D registration to be invalid. Therefore future work
could combine machine-based registration with image-based registration to correct
for patient motion.



Chapter 10

Multimodal Registration in
Needle Guidance

This chapter is based on the following papers:

• Daniel Ruijters, Laurent Spelle, Jacques Moret, Drazenko Babic, Robert Homan, Peter Mielekamp,
Bart M. ter Haar Romeny, and Paul Suetens. XperGuide: C-arm Needle Guidance.In Proc. Euro-
pean Congress of Radiology - ECR 2008;Vienna (Austria), C-591, March 7-11, 2008,European
Radiology,Volume 18, Supplement 1, February 2008, p. 459. doi:10.1007/s10406-008-0003-0

• Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mielekamp, Bart M. ter Haar Romeny, and
Paul Suetens. Frame-less C-arm Needle Guidance.MICCAI 2008 Workshop on Needle Steering:
Recent Results and Future Opportunities,September 6, 2008, New York (USA)

• Laurent Spelle, Daniel Ruijters, Drazenko Babic, Robert Homan, Peter Mielekamp, Jeremy Guiller-
mic, and Jacques Moret. First clinical experience in applying XperGuide in embolization of jugu-
lar paragangliomas by direct intratumoral puncture.International Journal of Computer Assisted
Radiology and Surgery,Volume 4, Number 6, November 2009, pp. 527-533. doi:10.1007/s11548-
009-0370-6

10.1 Introduction

Paragangliomas, also known as glomus tumors, are highly vascularized neoplasms of
neural crest origin that arise from the glomus cells, which are chemoreceptor organs
in the walls of blood vessels that have a role in regulating blood pressure and blood
flow. Glomus cells are located in aortic bodies near the aortic arch and the carotid
bodies, situated close to the bifurcation of the carotid arteries. The glomus cells are
a part of the paraganglion system composed of the extra-adrenal paraganglia of the
autonomic nervous system, derived from the embryonic neural crest. Paragangliomas
are most frequently located in the abdomen (85%) and the thorax (12%), and only 3%
are found in the head and neck region. Glomus tumors are multiple in 25% of patients,
and are usually considered benign. However, in about 3% of cases they are malignant
and have the ability to metastasize [187–189].

Glomus tumors can be treated by surgical excision, radiation therapy, or a combi-
nation of those. Especially for large tumors, surgical removal is often associated with
substantial intraoperative bleeding rate, due to their vascular nature [188, 190–194].
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In order to reduce the intraoperative blood loss, preoperative transarterial emboliza-
tion has proven to be beneficial [195–199]. However, in many cases the devascular-
ization remains incomplete because of the extensive angioarchitecture and consider-
able arteriovenous shunting of the lesions. Therefore, direct percutaneous puncture
and the injection of acrylic glue or cyanoacrylate has been described as an effective
alternative [200–205].

In this chapter we describe a novel approach to the planning of the puncture trajec-
tory, and the interventional needle guidance. Our method relies on C-arm fluoroscopy
for the real-time guidance, while we also intend to integrate soft-tissue information, in
order to use an optimal path. Since the proposed method does not rely on a stereotac-
tic frame or markers, the strain on the patient is reduced, and the procedure duration
shortened [206, 207].

10.2 Methods and materials

10.2.1 Procedural technique

Prior to patient puncturing, the optimal needle paths are drawn on a preoperative
computed tomography (CT) dataset. Determination of the optimal needle trajectory
is initiated by marking the ultimate needle point, located in the lesion center (fig-
ure 10.1). A line is drawn in the 3D patient space towards the skin boundary, contin-
uously checking whether it traverses any vital anatomical structures or impenetrable
bones.

(a) (b) (c)

Figure 10.1: The target point (green) is marked in the glomus tumor. (a) Axial view. (b)
Sagittal view. (c) Coronal view.

When the line is defined, the puncture point located on the patient skin is defined
as the entry point of the virtual trajectory (figure 10.2). The inspection of the line
is performed by doing soft tissue stacking perpendicular tothe line’s spatial location
(oblique cross reformat stack). Multiple trajectories canbe stored in this way. This
planning phase is meant to be performed ahead of the intervention execution or peri-
procedurally in the case additional lesion access is needed.

At the beginning of the intervention a 3D soft-tissue cone-beam CT dataset (Philips
Allura XperCT; Best, the Netherlands) is acquired with the C-arm X-ray system, see
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(a) (b)

(c) (d)

Figure 10.2: (a) To establish the path to the target point a 3D view on the skull is used, in
order to find a straight path without penetrating any bone tissue. (b) A planned path can be
investigated from any orientation. (c) This view permits to view the entry point on the skin. (d)
An octant through the planned trajectory is cut out, allowing to inspect the soft-tissue along
the path.
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section 2.4. Consequently, the preoperative CT dataset is co-registered to the peri-
operative cone-beam CT according to the Mutual Informationcriterion [109]. Since
the C-arm system is used to obtain the cone-beam CT data, as well as the 2D fluo-
roscopy data, the relation between their respective coordinate systems is inherently
known, as long as there is no patient motion. As a consequence, the image-based
registration of the CT and peri-operative cone-beam CT datasets also registers the CT
and C-arm coordinate systems, see section 6.6.

After the automatic registration has been completed and validated by the physi-
cian, the path vector is sent to the C-arm, and the geometry viewing incidence is
steered to be tangent to the planned path: the entry view. Since this view is tangent
to the needle trajectory, the path is foreshortened to a single point. When the needle
is positioned at the entry position and its orientation is tangent to the fluoroscopy im-
age, it can be inserted (figure 10.3). The C-arm viewing incidence is then steered to
be perpendicular to the planned path: the progression view.In this orientation, the
needle can be navigated along the planned trajectory.

Figure 10.3:The needle orientation is adjusted under fluoroscopy guidance to insert the needle
in the back of a phantom. The physician has to take care to prevent directX-ray radiation to
his/her hands.

The live fluoroscopy image is overlaid with the planned needle trajectory and
fused with an oblique slice of the soft-tissue data, perpendicular to the viewing inci-
dence and passing through the target point, using the methodpresented in chapter 4.
The overlay image is real-time updated for any change in viewing incidence (L-arm
angle, rotation, angulation), field of view, and source-image distance [206]. The en-
try view is compensated for parallax distortion. The projection of the planned path
and soft-tissue information is aided considerably by the fact that modern C-arm sys-
tems use flat X-ray detectors, which do not possess any pincushion deformation of
the image, contrary to their image intensifier predecessors.

The entry view and progression view steps are repeated for all planned puncture
paths. The views can be selected at table side. Optionally, new paths can be planned
during the intervention. After the insertion, a new cone-beam CT can be acquired
and registered to verify the needle position with regard to the soft-tissue structures
and anatomical landmarks.
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10.2.2 Patients and materials

Two patients with a jugular paraganglioma tumor were selected for treatment accord-
ing to the described method. Embolization by needle puncture was preferred over
surgical excision because of the surgical treatment related difficulties: highly vascu-
larized tumor tissue and the associated trauma. The patients were treated with percu-
taneous intratumoral injection of cyanoacrylate in order to embolize the lesion [205].
Each puncture was performed under high-quality X-ray roadmapping (Philips Al-
lura Xper FD20; Best, the Netherlands). The treatment was performed under general
anesthesia, which considerably reduces the risk of patientmotion. Patient motion
introduced in the course of the procedure would lead to misalignment of the fused
image data. Catheter angiography was used to visualize the tumor location and to
confirm the successful embolization of the capillary lesionnetwork. Figure 10.4
shows examples of pre- and post-embolization vasculature.No additional imaging
techniques, such as ultrasound, were used.

(a) (b)

Figure 10.4: Endovascularly injected contrast medium shows the vascularization of glomus
tumor (a) before, and (b) after embolization in DSA images. The tumor is indicated by the
white arrows.

For both patients two needle trajectories were planned using a preoperative CT
angiography scan (16-slice Siemens Somatom Sensation, data sets consisted of 256
and 271 slices respectively of5122 pixels, voxel size:0.42 · 0.42 · 0.70 mm3, H50s
filter, arterial phase).
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10.3 Results

The registration with the peri-operative cone-beam CT reconstruction took less than
8 seconds, due to the efficient calculation of the Mutual Information criterion by
employing the processing power of the graphics hardware (figure 10.5). Maeda et
al. have shown that in phantom studies a target point can be reached with a gap
of 3.8 ± 1.9 mm [207]. For the two patients it proved to be possible to guide the
needle within 5 mm of the planned path, using the fluoroscopy fused with soft-tissue
visualization (figure 10.6). For the first patient (female, 63 years) one additional path
was planned during the intervention in order to maximally embolize the tumor, and
for the second patient (female, 64 years) three additional trajectories were planned.

(a) (b)

Figure 10.5: The registered CT data (yellow) and the cone-beam CT data (red), together with
the planned path. (a) Left oblique view. (b) Posterior oblique view.

As embolic agent the currently available Onyx 18, a nonadhesive liquid embolic
agent comprised of 6% EVOH copolymer dissolved in dimethylsulfoxide, was used.
To puncture, a 22-gauge spinal needle (Terumo; Tokyo, Japan) was employed.

Using the described XperGuide technique allowed to steer the embolization nee-
dle with a higher confidence to the planned target locations for injection of the em-
bolic agent and reduced the risk of puncturing the carotid artery. The availability of
the real-time position of the needle over the planned needlepath (and any deviations)
and the anatomical landmarks in the CT dataset reduces the need for intermediate an-
giography, and therefore reduces the use of iodine contrastmedium and X-ray dose
compared to traditional fluoroscopy guided direct puncturing. No post procedure
complication was established during the one year checkup.

10.4 Discussion

Ultrasound guidance is considered as the first line imaging technique while perform-
ing needle punctures. However, due to the presence of the massive occipital skull
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(a) (b)

Figure 10.6: (a) Entry point view, showing the real-time fluoroscopy image (inner whitesquare
overlaid image), the soft-tissue (blue), the skull (red), and the bull’s eyetarget point. The needle
is being positioned for entry. When the needle is foreshortened to a single point at the bull’s
eye it can be inserted. (b) Progression view, showing the real-time fluoroscopy image, the soft-
tissue and the planned path. Any vertical deviation from the path can be monitored. In-plane
deviations can be checked by switching back to the entry point view.

base bone and ultrasound interference with the bony anatomy, other imaging modali-
ties are used for guidance in the head and neck region, such asstatic CT images, CT
fluoroscopy, X-ray fluoroscopy, or optionally stereotacticnavigation. All mentioned
approaches possess their limitations; CT based proceduresare limited by the patient
access area within the gantry. Additionally, the needle path that can be planned and
tracked is restricted to the axial planes, imaged by the CT modality. Static CT im-
ages further lack real time feedback. Another option is X-ray fluoroscopy, which
produces less X-ray dose and offers fewer restrictions in patient access compared to
CT fluoroscopy. However, this modality does not provide any soft-tissue information.

The fluoroscopy navigation overlaid with the planned path, as proposed in this
chapter, has been shown to be an accurate tool for needle guidance. The procedure
is performed in the angio lab, using C-arm fluoroscopy. No additional navigation
equipment, special devices or special needles are required, which means that there is
no necessity to invest in additional specialized and unfamiliar equipment and training,
delivering a cost-efficient procedure. The fact that the presented method does not use
any stereotactic frame or markers reduces the strain on the patient and facilitates the
work flow management. The procedure can be carried out more efficiently, compared
to CT guidance.

The described technique offers the advantage over traditional angiographic X-
ray guided punctures that the needle is accurately insertedalong a path, which was
planned on a three-dimensional soft-tissue dataset. Furthermore, the soft-tissue data,
as well as the planned needle path, are visualized together with the real-time fluo-
roscopic image of the needle that is being inserted. The presence of this combined
information increases the confidence during guidance and allows for a more accurate
deliverance of the embolic agent at the destination location in the tumor.

The patient pose differed between the preoperative CT and the fluoroscopy guided
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intervention, in order to obtain optimal access to the planned trajectory proximate to
the ear (figure 10.7), but this did not form a complicating factor. The registration
step was not hindered by the difference in pose, and conveyedthe planned paths
and CT soft-tissue information into the coordinate system of the C-arm. The needle
accessibility of an intracranial location, however, can belimited by the topology of
the skull.

(a) (b) (c)

Figure 10.7: (a) Patient pose in the CT scan. (b) Patient pose on the C-arm table; the head
is tilted to gain better accessibility to the needle entry position near the ear. (c) Registered
CT data (yellow) and C-arm generated cone-beam CT data (red). The registration can be
performed without any manual initialization or interaction.

10.5 Conclusions

We present a method for planning and guiding needle insertion by combining X-ray
C-arm fluoroscopy and 3D soft-tissue information. The entrypoint view and the pro-
gression view together allow a complete assessment of the present needle position
with regard to the planned trajectory. The fusion with the soft-tissue dataset incor-
porates information that is missing in the fluoroscopy imagein a readily accessible
manner.

Since all the involved equipment is already available in theangio suite, and there
are no additional constraints to the pre-interventional CTacquisition, the described
method can be easily and cost-efficiently incorporated. From the feedback from the
clinical users from various hospitals it can be concluded that the described method
provides a higher degree of confidence during the procedure,because the planning,
pre-interventional soft-tissue data and the live fluoroscopic tracking of the needle is
accurately presented in a fused image. The procedure is considered to be easy to use
when the hospital staff is adequately trained. First clinical experience in applying
the proposed guidance in the percutaneous embolization of paragangliomas by intra-
tumoral needle injection of an embolic agent has been obtained. The procedure is
considered to be sufficiently accurate, successful and aidsin reducing the procedural
time.
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Multimodal Registration for
Coronary Artery Disease
Interventions

This chapter is partially based on the following papers:
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11.1 Introduction

Coronary Artery Disease (CAD) is a condition in which plaquebuilds up inside the
coronary arteries, which supply the myocardium (heart muscle) with oxygen-rich
blood. Plaque consists of fat, cholesterol, calcium, and other substances found in the
blood. When plaque builds up in the arteries, the condition iscalled atherosclerosis.
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Figure 11.1: Stent delivery to a stenotic artery by percutaneous catheterization [208].

The obstructed blood supply to the myocardium can lead to fatigue, shortness of
breath and chest pain (known as angina). It also increases the likelihood that blood
cloths will form in the arteries. A blood cloth or the acute rupture of plaque can
partially or completely block the blood flow. A sudden complete obstruction may
lead to an acute myocardial infarction (heart attack). Overtime, CAD can weaken the
heart muscle and lead to heart failure and arrhythmias [208]. While the symptoms and
signs of coronary artery disease are noted in the advanced state of the disease, most
individuals with coronary artery disease show no evidence of disease for decades as
the disease progresses. CAD is the leading cause of death worldwide. The treatment
options are: medication, coronary artery bypass surgery, or percutaneous intervention
(figure 11.1).

A Chronic Total Occlusion (CTO) is defined as an artery that has been completely
occluded for more than 30 days. Medical therapy (e.g., cholesterol lowering medica-
tions, beta-blockers, nitroglycerin, calcium antagonists, etc.) is partially efficacious,
but rarely completely eliminates either the symptoms or theobjective evidence of the
ischemia. Surgical treatment involving Coronary Artery Bypass Grafting (CABG) is
effective as long as the distal target vessel is anatomically suitable for insertion of a
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bypass graft. The limitations of the bypass surgery are wellknown and include risk
of surgical mortality, and significant expense.

Another treatment option is Percutaneous Coronary Intervention (PCI). This min-
imally invasive, less costly procedure is accomplished by using conventional guidewire
techniques to slowly ‘poke’ through the occlusion. The timespent to recanalize a
chronic total occlusion is estimated to be between 5 minutesand several hours with
an average time of about 30 minutes. Percutaneous intervention of CTOs accounts for
10% to 15% of all angioplasties; however, after successful recanalization, there is an
increased rate of subsequent restenosis and reocclusion compared with nonocclusive
stenoses. Although several randomized trials demonstrated the efficacy of stent im-
plantation over balloon-only angioplasty, even with stents there remains a significant
rate of both restenosis (32% to 55%) and reocclusion (8% to 12%). Chronically oc-
cluded coronary arteries account for approximately 20-30%of the documented coro-
nary disease encountered in coronary catheterization labstoday [209–212].

The lack of anterograde blood flow in the totally occluded vessel segment, how-
ever, prevents the angiographic visualization using catheter injected iodine contrast
medium during angioplasty. In case there is no or little calcified plaque present, there
are no landmarks that indicate the location of the occluded vessel during fluoroscopic
navigation and treatment of the diseased vessel segment. The absence of anterograde
flow has been reported as one of the factors that can lead to procedural failure [213].

Due to the fact that contrast medium is injected intravenously, Computed Tomog-
raphy (CT) visualizes both anterograde and retrograde filled vessel segments. Fur-
thermore, because of its high contrast resolution, CT can also visualize soft plaques
sections. As a result it is possible to identify also the occluded vessel segments in
the CT reconstruction. In this chapter we describe the clinical experience with in-
tegrating pre-interventional coronary CT angiography andperi-interventional X-ray
fluoroscopy in the interventional treatment of CAD. The CTA and X-ray images are
presented in a fused visualization, using the techniques ofChapter 4, in order to guide
the navigation and deployment of intravascular devices through the diseased coronary
arteries, especially for CTO cases.

11.2 Methods and materials

11.2.1 Pre-interventional acquisition and analysis

Recent years have seen considerable advancements in the detailed imaging of the car-
diac anatomy using CT reconstructions. The newer 256-slice(Brilliance iCT, Philips
Healthcare) and 320-slice (Aquilion One, Toshiba Medical Systems) CT scanners are
able to cover the whole heart volume in one or two rotations, which leads to consid-
erable gains in temporal and spatial resolution and reducesmotion artifacts. These
developments especially enable high-quality coronary imaging with a significant re-
duction in radiation dose [214]. Prospectively gated axialimaging for coronary CT
angiography (or “step and shoot”), with radiation applied only during the middias-
tolic coronary rest phase, has demonstrated radiation dosesavings of greater than
75% compared with the traditional technique of helical retrospective gating while
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Table 11.1: Correlation of 64-slice computed tomography and invasive angiographyfor the
detection of greater than 50% coronary obstruction.

Study n Sensitivity Specificity Negative
Predictive Value

Leschkaet al. [221] 67 94% 97% 99%
Leberet al. [222] 59 73% 97% 99%
Mollet et al. [223] 52 99% 95% 99%
Raff et al. [224] 70 86% 95% 98%
Roperset al. [225] 82 95% 93% 99%
Fineet al. [226] 66 95% 96% 95%
Weighted average 90% 95% 98%

maintaining image quality [215–217] and with a diagnostic accuracy greater than
96% [218, 219]. Currently, coronary CT angiography is most renowned for its nega-
tive predictive value,i.e., for its ability to rule out the presence of (severe) coronary
stenosis, see table 11.1 [220].

The fused visualization requires that the CT and X-ray imagedata are registered
with the objective to find the spatial mapping between both datasets. In order to per-
form the automatic registration of the CT data and X-ray fluoroscopy images (see
Chapter 8) and the intra-interventional visualization, the coronary arteries need to be
segmented from the CT data. There is a vast amount of literature on this subject, see
e.g., [176–179]. The extraction of the coronary arteries from the cardiac CT data is
generally started after the whole heart segmentation has been performed because it
can provide clues to the location of the coronary arteries. The first step consists of
extracting the tubular structures in the raw CT data. To facilitate this extraction pro-
cess a separate representation is often generated in which the vessel-like structures
are highlighted. An example of such a “vesselness” [14] filtered image is shown in
figure 11.2 The coronary artery tree is then traced in the vessel-enhanced data start-
ing at the ostia, which could have been located during the preceding whole heart
segmentation. The segmentation algorithm tries to follow the enhanced structures
until it reaches the distal end of the vessel or the signal- orcontrast-to-noise reaches
a threshold. Most commercially available applications arecapable of extracting the
major coronary arteries, but let the operator provide the appropriate labels. It is al-
ways possible to edit and extend the automatically found centerlines or to trace the
entire vessels manually.

The segmentation of the coronary arteries in the CT data allows a detailed analysis
of the vessel lumen, stenosis and associated plaque tissue.Highly calcified regions
can be marked to show the extent of the lesion. The lesion diameter can be quantified,
however the derived percent diameter stenosis is usually rounded to the encompassing
quartile (e.g., 50%-75%) to cope with the limitations of the spatial resolution. The
often tortuous nature of the vessels does not allow them to becaptured in their entirety
in a single cut through the volume, even with a large slab size. This can be overcome
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(a) (b)

Figure 11.2: Example of a vessel-enhanced image. (a) A volume rendering of the original
CT dataset. (b) The same dataset after a vesselness filter was applied. The major coronary
arteries are visible in the center of the volume.

by using a curved Multi-Planar Reformat (MPR) to enable the visualization of the
entire course of the vessel, along with providing true distance measurements that are
not subject to foreshortening. The curved MPR is based on fitting a curved plane
through the centerline of a selected segmented artery.

11.2.2 Peri-interventional use

Because the ability for in-room manipulation of the CT data and their derived infor-
mation by the interventionalist during the diagnostic and PCI portion is limited, it is
important to show the essentials of the CT information during the critical portions of
the procedure. Figure 11.3 shows the segmented CT data as it is being displayed in
the cathlab. It is essential that the physician has the possibility to operate the system
directly from the patient table side. The operator has the opportunity to select the
coronary artery of interest and define the vessel segment of interest from the table
side. In the lower left panel the C-arm configuration is shownthat corresponds with
the current viewing angle of the CT dataset. The orientationof the rendered views
can be coupled to follow the C-arm geometry viewing incidence in real-time.

Spatial foreshortening is the distortion of geometrical structures (e.g., vessels)
when depicted at an angle (figure 11.11). Foreshortening of the vessel geometry in
X-ray images makes it difficult to asses their true length, and therefore it is prefer-
able to select X-ray projection views that have minimal foreshortening for the ves-
sel segments of interest. In order to assist the physician inselecting C-arm views
with least foreshortening and vessel overlap, an optimal view map is generated (fig-
ure 11.4) [227]. The vertical axis of this map represents theangulation of the C-arm
system, and the horizontal axis the rotation. The color of a point on the optimal view
map represents the amount of foreshortening of the selectedcoronary segment, and
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Figure 11.3: In-room presentation of the segmented CT data. In the middle the aorta trunk,
the coronary arteries (red) and in this case the left ventricle are shown. The curved MPRs at
the right correspond to the selected vessel segment.

its likelihood to overlap with other vessel branches. Basedon this optimal view map
a series of C-arm angles may be chosen to be used during the intervention. These
angles may be different than the routine views commonly usedby the cardiologist.
The C-arm can be steered to the selected angles, using the principles described in
section 6.6 and appendix A.

After a registration between the segmented CT data and a selected X-ray im-
age has been performed, as discussed in chapter 8, the live X-ray fluoroscopy image
stream can be displayed fused to the CT data in real-time, as is shown in figure 11.5.
Ultimately, the cardiac phase of the CT image would be matched to the cardiac phase
of the radiographic data. Currently the CT images are shown in a preselected static
cardiac phase; the coronary arteries in the X-ray image display a periodic motion
around the coronary arteries, segmented from the CT data.

11.3 Results

A typical example of CTO revascularization using image fusion is demonstrated in
figure 11.6. The catheter coronary angiography reveals the vessel cutoff, whereas
the superimposed CT images from a similar viewing angle demonstrate the occluded
segment and the remainder of the left circumflex artery, which is filled by collaterals.
Successful restoration of flow was accomplished by the antegrade technique [210],
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(a) (b)

Figure 11.4: The optimal view map is based on the vessel segment indicated by the white line.
The white arrow points to the spot on the optimal view map that correspondsto the current
viewing angle. (a) This suboptimal viewing angle leads to a considerable amount of foreshort-
ening and a lot of overlapping vessels. (b) This viewing angle delivers least foreshortening,
while the vessel segment of interest does not overlap with other branches.

Figure 11.5: A fused visualization of the coronary arteries, segment in a 3D CT dataset(red),
and 2D X-ray angiography image (grey). The combined visualization allows the correlation
of the vessels in the CT data (and pre-interventional annotations) and the peri-interventional
X-ray by the observer.
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Figure 11.6: (a) Fusion of CT (red) and X-ray images (grey) for navigation in a CTO vessel.
The catheter injected contrast medium (white) does not enter the left circumflex (LCX), whereas
the path is still visible from the CT data. (b) The corresponding curved MPR,showing the CTO
and the retrograde filled continuation of the vessel.

which means that the catheter was progressed in the direction of the bloodstream.

11.3.1 Case report

A 40-year-old male with a complex cardiovascular history presented with atypical
anginal symptoms. Four years back he presented with a brain abscess which required
drainage. He subsequently developed aortic valve endocarditis and underwent aortic
valve replacement, ascending aorta replacement, and reimplantation of his coronary
arteries. He reportedly had an intraoperative left anterior descending artery (LAD)
injury which required the placement of a saphenous vein graft (SVG) to the LAD. No
preoperative coronary angiography was performed. Soon after discharge he presented
to another hospital with an acute coronary syndrome and positive cardiac biomarkers.
A 90-percent lesion of his proximal right coronary artery (RCA) was stented. A
week later, the patient presented with chest pain and positive cardiac biomarkers. A
repeat intervention of the RCA was performed and due to a distal edge dissection
at the previously placed stent another stent was implanted and overlapped with the
previous stent. Given his complicated cardiovascular history and presentation the
decision was made to perform a coronary CTA. The CTA suggested 50-75% in-stent
restenosis of the mid-RCA stents and prompted invasive coronary angiography, which
revealed that the RCA had only mild irregularities with widely patent stents. The
LAD and the left circumflex artery had only mild luminal changes. The graft to the
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Figure 11.7: Computed tomography showing the saphenous vein graft (SVG) location inan
unusual superior and anterior position due to a surgical repair of the aorta. Inside the white
box note the origin of the SVG in relation to the aorta and the proximity to the innominate
artery. The centerline prediction of the position of the coronary arteries inthe left anterior
oblique position is shown. LAD = left anterior descending artery; RCA = right coronary
artery; M1 = first obtuse marginal; M2 = second obtuse marginal.

LAD was not visualized as in prior procedures despite aortography in two planes.
Competitive flow along the mid-LAD suggested a patent SVG. The overlay of the
CT image (figure 11.7) on X-ray (figures 11.8 and 11.9) successfully allowed for
the cannulation of the vein graft to the LAD, which, due to thedistorted anatomy
of the aorta, was in an unusually high and anterior location (figure 11.10) [228].
The fusion of the CT data with the live fluoroscopy image stream provides more
confidence and a higher accuracy during the navigation and deployment of the intra-
vascular devices. Especially for complex pathologies and anatomical deformation the
roadmap provided by the fused CT morphology is highly valuable.

11.4 Discussion

The views with least foreshortening and overlap with other vessel branches with re-
spect to a chosen vessel segment can be planned before or during the intervention,
using the information in the optimal view map (see figure 11.4). Being able to se-
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Figure 11.8: Magnified image of the ostium of the vein graft (arrow) by CT (left) and the X-ray
angiography acquired from the same viewing angle (right).

Figure 11.9: Rendering of the ostium (arrow) of the SVG and the X-ray angiogram froma
different angle in the CT (left) and the corresponding X-ray viewing angle (right).
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Figure 11.10: Computed tomography background with a live X-ray overlay showing the CT
derived position of the SVG and the subsequent successful cannulation and injection under
fluoroscopy.

lect the most appropriate view immediately helps to save contrast agent and radiation
dose, and also provides more optimal views for best positioning and deployment of
the intravascular devices, such as stents. Suboptimal views, leading to foreshortening
(figure 11.11), may partially account for the suboptimal sensitivity and specificity of
coronary angiography [229]

Coupling the in-room presentation of the segmented coronary CT data and associ-
ated curved MPR representations with the viewing incidenceof the C-arm geometry
in real-time provides information of the current viewing angle without administration
of additional contrast medium and X-ray dose.

Image fusion of CT and live X-ray fluoroscopy has several clinical applications,
such as radiotherapy planning and verification, surgery planning and guidance, and
minimally invasive vascular treatment in peripheral and neurovascular interventions.
The application of image fusion to coronary interventions is challenged by cardiac
and respiratory motion, and only recently efforts in this domain have been reported
[127, 214, 228, 230]. Although the live X-ray images of the coronary arteries display
a periodic movement around the static CT image, it is still considered valuable for
navigation purposes. Especially for CTO cases, where the vessel distal to the occlu-
sion is completely hidden in the X-ray image, the fused imageprovides a useful road
map.
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Figure 11.11: Perpendicular orientation of the X-ray beam to a vessel segment or lesion of
interest results in minimal distortion of the projection image (left). Vessel foreshortening results
in suboptimal projection images that misrepresent the true length of a lesionor vessel segment
(right). Adapted from [229]

11.5 Conclusions

It is to be expected that with the improvements being achieved in coronary CT an-
giography with respect to increasing temporal and spatial resolution at a decreasing
radiation dose, CT will gain a more prominent role during diagnosis of Coronary
Artery Disease (CAD), especially for the more complex cases. Along with improve-
ments in the CT imaging techniques, the tools for automatic analysis become ever
more sophisticated. When this detailed information is available at the diagnostic
stage, the desire to integrate it in the treatment course is alogical step. In this chapter
first clinical experiences with image fusion during the treatment of CAD have been
reported. We have embedded the registration algorithm, presented in chapter 8 in an
integrated clinical application that allows to fuse the live X-ray fluoroscopy images
and the diagnostic CT data in a single fused image. The systemcan be operated from
the patient table side in an intuitive manner. First clinical feedback has been posi-
tive, since the CT data helps the physician during guidance and deployment of the
intravascular devices.
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Conclusions

It was the objective of this thesis to combine multiple imagedatasets into a coher-
ent fused visualization to guide minimally invasive treatment, assuring usable and
cognitively adequate interaction and interpretation by the clinician. In this work this
goal has been filled in by focussing on practical technical solutions, without loss of
general applicability. In this context a number of fundamental concepts have been
developed that enable the integration of multimodal data inimage guided interven-
tions and therapy (IGIT). Fast volumetric visualization and registration of multimodal
data has been explored in order to achieve the realtime integrated fused image guid-
ance during interventional treatment. The developed methods have been validated in
a number of concrete clinical applications, which serve to demonstrate the general
applicability of the presented concepts.

The methods that have been presented in this thesis can be divided into two main
categories: visualization techniques and registration techniques. For the fast visual-
ization of volumetric datasets a double space-skipping hierarchy has been developed.
This double hierarchy has been based on the analysis of the GPU hardware pipeline.
Each hierarchal level addressed a bottleneck in this pipeline and can be tailored to
optimally leverage its data throughput. Due to this approach, the maximal rendering
performance can be reached without sacrificing any image quality. Especially for
visualization during image-guided interventions it is of the greatest importance that
image rendering, which is fused with real-time acquired clinical data, is instantaneous
and allows for fluid and interactive manipulation.

Several practical approaches for fusing volumetric and X-ray projection data have
been presented here. Overlaying the silhouette of the 3D datasets allows to indicate
the shape of obscured parts of a dataset, while maintaining an image that is easy to
interpret at the same time. The use of the stencil buffer allows to process the real-time
projection image differently, depending on the underlying3D data. These methods
enable the presentation of easy-to-read images during the intervention without occu-
pying any significant additional processing resources.

Autostereoscopic displays provide depth perception without any external aids,
such as goggles. Their added value in the intervention room concerns the intuitive in-
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terpretation of 3D data. As a consequence of this improved 3Dpresentation there is a
reduced need for interactive manipulation with such data, which provides the clinician
with more time for other tasks. The rendering of images for such autostereoscopic
screens demands a lot of computation resources, since the 3Dscene has to be depicted
for each of the views that are emitted by the autostereoscopic display. In this work it
has been shown how the GPU can applied to efficiently render tosuch displays and
how the frame rates and the resolution can be balanced when the processing resources
are scarce.

Concerning the subject of registration, the application ofthe GPU has been in-
vestigated to accelerate the process of elastic image registration. Elastic registration
typically requires considerable computation times, and thus its acceleration would aid
the utilization during clinical procedures. The improvements in computation times
amounted up to a factor 50, using the proposed method. We investigated the preci-
sion and performance aspects of the GPU in the efficient evaluation of uniform cubic
B-splines, which are employed in the registration process.Especially for clinical ap-
plications it is essential to know the (im)precision of the used algorithms and to assess
its impact on the clinical results.

A novel similarity measure has been developed for the purpose of registering
coronary arteries, which were imaged using CT and the X-ray C-arm. The similar-
ity measure does not require a segmentation of the live interventional X-ray image. It
uses the vesselness filter to enhance the vessel structures in the X-ray image [14]. The
similarity is then obtained by calculating the dot product of the distance transform of
the projected CT vessel centerlines with the response of thevesselness filter. Our
validation tests proved that it performes robustly and accurately for the given task.

The clinical applications that were developed and investigated in the context of
this thesis concerned minimally invasive treatment using the X-ray C-arm. All ap-
plications used the fast volume rendering and data fusion that were introduced in
chapters 3 and 4. The first clinical application that has beendescribed dealt with
the guidance and roadmapping of the catheter in the treatment of arteriovenous mal-
formations (AVM). For this purpose a pre-interventional MRdataset, clearly depict-
ing the AVM, was registered with a peri-interventional 3D-RA reconstruction using
a GPU-accelerated mutual information criterion. The real-time fluoroscopy image
stream was then overlaid on the fused 3D data, using the machine-based registration
described in section 6.6. The roadmap information providedby the 3D-RA vascula-
ture allows to reduce the amount of harmful contrast agent and provides more insight
in the 3D topology of the vessel tree. The fused MR delivers additional information
regarding the AVM location, affected tissue and feeding vessels.

A further clinical application that has been researched addressed the percutaneous
embolization of skull base paragangliomas (glomus tumors)through direct needle
punctures. The needle path was planned on a pre-interventional CT dataset, which
was registered with a peri-interventional cone-beam CT reconstruction of the patient’s
head. This registration also brought the treatment planning into the frame of reference
of the C-arm system. The fused 3D data, together with the planned needle trajectory,
could then be visualized together with the live fluoroscopy images. The insertion
point and needle orientation were determined and guided by the real-time C-arm im-
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ages, fused with the planned data. Also the progression of the needle insertion was
monitored from a viewing angle that was determined by the planned path. It proved
to be possible to execute the clinical procedure in an accurate and safe fashion, using
the described techniques.

The final clinical application that has been described concerned the use of CT
data for roadmapping purposes during the treatment of chronic total occlusion (CTO)
of the coronary arteries. For this procedure the coronary arteries were segmented in
a pre-interventional CT dataset. The segmented arteries then were registered with
peri-interventional X-ray angiography images, using the vesselness-based method,
defined in chapter 8. During the advancement and deployment of the intra-vascular
devices the live X-ray image stream is overlaid on the staticsegmented CT data. This
procedure proved to aid the navigation for the vessel segment distal to the occlusion,
and increased the confidence during the guidance of the intra-vascular devices.

A large amount of coordinate spaces with dynamically changing spatial relations
is inherent to the integration of multiple image datasets during a clinical interven-
tion. We have introduced a coordinate space framework, described in appendix A,
that allows to administrate any number of such coordinate spaces in a transparent and
maintainable manner. The utilization of such a framework eases the conception of
new applications for minimally invasive procedures, and reduces the risk of program-
ming errors. As such, it contributes to the target of developing techniques that are
generally applicable to image guided interventions. The framework has proven its
added value in several large software projects at Philips Healthcare.

All algorithms were implemented in C++ code and embedded in clinical proto-
types that could be operated by the clinical staff. The prototype software packages
have been clinically investigated at the following hospitals: the Karolinska Institutet
in Stockholm, Sweden, the Fondation Rotchild Hospital in Paris, France, the Cen-
tre Cardiologique de Nord in Saint-Denis, France, the Institut Cardiovasculaire Paris
Sud in Massy, France, the Lenox Hill Hospital in New York, USA, the University
of Colorado Hospital in Denver, USA, the Royal Hallamshire Hospital in Sheffield,
UK, and the National Taiwan University Hospital in Fooyin, Taiwan. During several
medical conferences live interventional treatments have been broadcast from various
hospitals, using these prototypes; The coronary artery fusion software has been used
during live cases at the European Congress of Percutaneous Cardiovascular Radiol-
ogy (EuroPCR) of 2006 and 2007 by the Institut Cardiovasculaire Paris Sud in Massy,
France, and during the Transcatheter Cardiovascular Therapeutics (TCT) conference
in 2006 by the University of Colorado Hospital, Denver, USA.The needle guidance
and multi-modality 3D roadmapping applications have been used during live cases
at the Live Interventional Neuroradiology & Neurosurgery Course (LINNC) of 2007
and 2009 by the Fondation Rotchild Hospital in Paris, France. The described tech-
nologies have been integrated into commercially availablesolutions (Philips Allura
3D-RA, sold over 500 products, and Philips Allura XperGuide), which have been
installed in hospitals all over the world.
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12.1 Outlook and future work

The advancement of image guided interventions and therapy (IGIT) has just begun. In
the future there will be a higher volume of procedures, more complex procedures, and
more image integration. The ever increasing computing power will enable more com-
plex algorithms to compute within time frames that are acceptable for interventional
use. Computing devices will have more parallel capacities than today’s hardware. In
this sense, the trend of designing algorithmic solutions that can harness this parallel
power, as has been done in this thesis by using the GPU, will continue. It is to be ex-
pected that the solutions that have been described in this thesis are just the beginning
of whole families of new and advanced image processing methods that can be used
in interventional treatment.

For volume visualization the primary future developments with most added value
for interventional image guidance lie in the area of simultaneously interactive ray-
casting of multiple volume datasets. In this thesis it has already been shown how
fast volume rendering can be combined with surface rendering of other datasets, see
Chapter 4. The state of the art already describes direct volume rendering of multiple
datasets, but at the cost of a significant performance penalty and typically sacrific-
ing the visualization of topological relationships as presented in this thesis. Future
algorithms and hardware may address these issues. In the field of fast registration
algorithms there are many directions that can be explored. Robust model and feature-
based registration, registering more than two datasets simultaneously, and the ex-
ploitation of massive parallelism are just a few examples. The application of the
presented methods to a large patient population in the context of a clinical trial would
allow to quantify the merits in terms of efficacy, radiation dose reduction, iodine con-
trast medium used, and clinical outcome.

Furthermore there are still many clinical interventional treatments that can benefit
from the presented techniques. Multimodal image guidance for applications such as
endovascular aneurysm repair (EVAR) when treating an abdominal aortic aneurysm
(AAA) or the embolization or ablation of liver tumors, elastic image registration of
functional image data during neuro-surgery, and the registration of planning data for
guidance during the treatment of structural heart disease are only some of the image
guided therapies that could benefit from advanced peri-interventional registration and
interactive fused visualization. The results from the clinical applications described in
this thesis are very encouraging and the path that has been followed can be expanded
to improve the clinical outcome for many other interventional treatments.
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[12] Rüdiger Westermann and Bernd Sevenich. Accelerated volume ray-casting using texture
mapping. InProceedings IEEE Visualization 2001, pages 271–278. IEEE Computer
Society, 2001.

137



138 BIBLIOGRAPHY

[13] Christian Sigg and Markus Hadwiger. Fast third-order texture filtering. In Matt Pharr,
editor, GPU Gems 2: Programming Techniques for High-Performance Graphicsand
General-Purpose Computation, pages 313–329, 2005.

[14] Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever. Multi-
scale vessel enhancement filtering. InProceedings MICCAI’98, pages 130–137, Lon-
don, UK, 1998. Springer-Verlag.

[15] Paul J. Besl and Neil D. McKay. A method for registration of 3-D shapes.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, Mar 1992.
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Appendix A

A Coordinate Space
Framework

This chapter is based on the following paper:

• Daniel Ruijters, Jeroen Terwisscha van Scheltinga, Bart M.ter Haar Romeny, and Paul Suetens.
Design Pattern for Multi-Modality Coordinate Spaces.10th Philips Software Conference,Novem-
ber 2006, Veldhoven (the Netherlands), 8 pages

A.1 Introduction

There are numerous applications with a large number of geometrical coordinate spaces
(also known as coordinate systems or frame-of-reference),such as interactive 3D
graphics and modelling applications, algorithms handlingcomplex dynamic mechan-
ical structures, coordinate transformations for astronomical or geodetic purposes (such
as GPS), and many others. The relationships between the different coordinate spaces
can be static or dynamic, bijective or many-to-one, continuous or contain discontinu-
ities, and be affine or non-affine.

In the biomedical arena multiple coordinate spaces are encountered when dealing
with multi-modal image registration and fusion, but also when considering the me-
chanical parts of an imaging system, or when establishing the geometrical relation
between an image (e.g., coming from an ultrasound probe) and the patient. Espe-
cially the dynamic integration of multiple image datasets from different sources at
run time leads to an explosion of different coordinate spaces. Sometimes coordinate
spaces that are very similar (e.g., integer voxel coordinates at the center or at the cor-
ner of the voxel extent) lead to erroneous assumptions by programmers that are often
undiscovered and persistent system inaccuracies are the consequence.

When the amount of coordinate spaces is large, the code dealing with coordinate
transformations may become complex and prone to errors. To overcome these prob-
lems, we developed a software framework, to transparently and robustly deal with
multiple coordinate spaces. This framework especially aims at severely reducing the
chance of making false assumptions, and reducing the complexity of the code.
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The framework can be applied for the transformation of data between related
spaces of orderedn-tuples, such as vector spaces. It might be of interest to point
out that these spaces are not necessarily Euclidian. For instance, a voxel space (a
vector space representing voxel indices), whereby the voxels are not cubic (which
is very common ine.g., CT and MR volumes) isnot Euclidian. Strictly speaking,
the framework can also be applied to spaces of orderedn-tuples that are not vector
spaces,i.e., spaces whose elements cannot be linearly combined, such asmanifolds.
The only criterion is that a mapping exists between the spaces.

A.2 Related work

An intuitive hierarchical data structure for managing the relations between different
coordinate systems is the scene graph. A scene graph is a collection of nodes in a
tree structure. The nodes in a scene graph represent a coordinate space. Often a node
is associated with a spatial object, such as a voxel dataset or a mesh in a biomedical
application, ore.g., an engine, a door or a steering wheel in an automotive modeling
application. The edges or links between the nodes contain their spatial relationship.
A node may have many children but only a single parent. The spatial transformation
between any two nodes in the scene graph can be established byconcatenating all
spatial transformations on the path between them. A property of the tree hierarchy is
the fact that a change of the spatial transformation of a nodeto its parent, automati-
cally affects the children of that node in the same way. Parent nodes, therefore, act as
compound objects to their children, which can then be moved,transformed, selected,
etc. as easily as a single object.

Scene graphs are used in numerous graphics applications, toolkits, modelling and
programming languages, such as VRML [231], Open Inventor [232], OpenGL Per-
former [233], Java 3D [234], Open SG [235], Open Scene Graph [236], nVidia
NVSG [237] and many others. Where VRML is only able to describethe scene
graph, the others also provide some means to transform points from one coordinate
system to another. The transformations are, however, stillvery much driven by the
user of these tools,i.e., it is his responsibility to keep track of which data are in which
coordinate space, and whether and how they should be transformed.

Zuiderveld and Viergever [70] describe an Object-Orientedapproach aimed at
integrated visualization of multiple volumetric datasets, which also deals with coor-
dinate systems. However, they chose to leave the coordinatetransformations to the
responsibility of the user of their framework. Nadeau [72] presents volume scene
graphs, a structure for composing scenes containing volumetric data sets, where the
scene graph is used to transform coordinates from world to image space. Other trans-
formations, though, are not directly provided by his framework.

In geospatial applications [238, 239] it often is desirableto express points in dif-
ferent geometry systems, such as geocentric, heliocentricor local coordinate systems.
For reasons of efficiency or simplicity it can be desirable toexpress coordinates in flat
earth or spherical earth coordinate systems, and for accuracy ellipsoid or geoid coor-
dinate space may be required. The software paradigm in this chapter can be used to
easily query data in the desired coordinate system.
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There is a significant difference between a point and an extent (the distance be-
tween two points), as Weisert [240] points out. This difference is particularly of
importance when transforming data from one coordinate system to another one. For
example, translations do not affect the values of an extent,but they do affect the co-
ordinates of a point (a ruler of 30 cm retains its size of 30 cm when we move it from
Eindhoven to Leuven).

The here presented framework can be regarded as a software design pattern for
dealing with a large number of coordinate spaces. A general overview of design
patterns is offered by Gamma et al. (“the gang of four”) [241].

A.3 Design basics

We define “geometry classes” as a set of object classes, describing basic geometrical
entities, such as points, vectors, lines, angles, planes,etc. To identify them easily,
we use the prefix“geo” . Instances of these classes are generalized under the term
“geometry objects”. It is our objective to easily query themin any given coordinate
space. A further important class in our framework is the3D object. A 3D objectis
a node in the scene graph and contains a number of geometry objects to describe its
spatial properties. Any spatial entity that can be drawn should be derived from the
3D objectclass. But there can be also abstract3D objectsthat do not draw anything,
but merely represent an abstract frame of reference.

One of the first observations we make, is the fact that any3D object, which can
be found in a scene graph, implicitly defines its own coordinate space. Consider a
traditional3D object(e.g., a table), which is located in a parent space (e.g., a room).
The object has a translation, which corresponds to the coordinate of the origin of the
object expressed in its parent space. Further it can have a rotation, which corresponds
to a rotation of its axes with regard to the axes of the parent space, and a scaling. In
fact we have just described a rigid transformation between two coordinate spaces.

In our software paradigm, an abstract coordinate space is aninstance of a3D
object, and therefore every instance of a class, inherited from the3D objectclass,
always defines its own coordinate space.

Further, we establish that the coordinates of a point are always defined in a coordi-
nate space. This may be a trivial observation. In an application with many coordinate
spaces, though, treating a datum in the wrong coordinate space is one of the most
common causes for bugs, and may be difficult to track when coordinate spaces are
similar or related. The same considerations are of course true for instances of other
geometry classes,e.g., normals, lines, planes,etc. Therefore we provide all geometry
classes, with a reference to the coordinate space they are internally defined in (see
figure A.1a). In this way it is virtually impossible to ‘assume’ a wrong coordinate
space.

The internal coordinate space of an instance of such a class is defined at con-
struction of the instance, and stays fixed during the lifetime of the instance. This is
particularly of importance when the relations between the coordinate spaces are dy-
namic. Imagine, for instance, a camera, which moves with respect to the depicted
scene; the relation between the camera coordinate space andscene coordinate space
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Figure A.1: (a) the geoPoint class has internal coordinate values, and a referenceto its in-
ternal coordinate space, (b) every 3DObject contains a reference to itsparent, and a spatial
transformation with regard to its parent.

is then dynamic. It matters whether the coordinates of a point are defined in camera
space (e.g., relative to the view port corners), or in scene coordinates(e.g., relative to
the position of an object in the scene).

A.4 Transforming space

TheTransformationclass describes the spatial mapping between an instance of a3D
objectand its parent in the scene graph (see figure A.1b). This is an abstract class,
and specific transformation classes, such as affine transformations, are inherited from
this class.

The Transformationclass possesses virtual functions to transform coordinates
from its owner space to the parent of its owner, and vise versa(this approach is sim-
ilar to the Visitor design pattern [241]). These functions return a boolean to indicate
whether the requested transformation could be performed. In this way also many-to-
one relations could be implemented; the function corresponding to the one-to-many
direction would then always return false. Further, transformations that are only valid
for a certain sub-space can use this mechanism, since they would return false for
points outside the sub-space. Similar virtual functions are available for transforming
all other geometry objects, like vectors, matrices, plane equations,etc.

A rigid transformation can be described by translation and rotation only. In the
case of an affine transformation (of which the rigid transformation is a sub class) the
virtual transformation functions can be implemented by multiplying homogeneous
coordinates(x, y, z, w), representing points or vectors, with the 4*4 transformation
matrix (or inverted matrix, for the inverse transformation). A typical implementation
for elastic (non-affine) transformations could use spline interpolation, driven by a
volumetric mesh.

Since no assumptions are being made about the type of transformation, the various
relations in a scene graph might be of a different kind (e.g., affine and non-affine
transformations could be found in the same scene graph, to depict for instance under-
water scenes).
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A.5 Querying geometry objects

One of the most essential functions that any geometry class has in our framework,
is theGet function (see figure A.1a). TheGet function allows to query a geometry
object with respect to a given coordinate space. TheGet function of e.g., thegeo-
Point class takes a reference to a coordinate space as input parameter, and returns the
coordinate values of the point with respect to the passed coordinate space.

World


Viewport
Voxels


Volume
 Camera


Patient


Figure A.2: Traversing the scene graph.

If the passed reference to a coordinate space equals the internal space of a geom-
etry object, its internal values are simply returned. If they are not equal, the inter-
nal values are transformed from the internal coordinate space to the destination one,
passed as input parameter. In order to do this, the scene graph is traversed, delivering
the path from the internal coordinate space to the destination one. The transforma-
tions between the intermediate coordinate spaces in the path are then applied to the
geometry object. If a transformation returns false (thus itis not possible to transform
the geometry object over that node), or if no path exists between the internal and
destination space (i.e., they are not in the same scene graph), an exception is thrown.

Four rigid transformations of a coordinate, as is shown in figure A.2, take 2.7µs
on a Pentium IV 3.0 GHz machine.

A.6 Traversing the scene graph

When the coordinate space that is passed to theGet function of a geometry object
differs from the internal one, the scene graph has to be traversed. In order to perform
this efficiently two arrays with references to the nodes in the scene graph are built.
The ascending array starts with the internal coordinate space of the geometry object.
Iteratively the parent of the last node in the array is added,until the top node is
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reached. The descending array starts with the destination coordinate space, and also
here parents are added until the top node is reached. Now it ischecked whether the
last node (the top node) in both arrays is the same. If this is not the case, meaning
that the internal and destination coordinate spaces are notin the same scene graph, an
exception is thrown.

World
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Volume
 Camera


Patient


World


Patient


Figure A.3: Building the path that represents the traversal of the scene graph.

After the check, the nodes at the end of both arrays are removed if they are the
same. This is repeated until the ends are different, see figure A.3. The remaining
nodes now form the path that has to be traversed. The data of the geometry object is
consequently transformed by the nodes in the ascending array, starting with the first
node in the array. Then the data is transformed by the nodes inthe descending array,
calling the inverse transformation functions. This array is parsed starting from the
end, see figure A.3. Note that the order of this algorithm is only determined by the
height of the scene graph, not by its width.

A.7 Operator overloading

Another important feature is the fact that we overloaded theoperators of thegeoPoint
andgeoVectorclasses. Note that two points cannot be added together, but apoint and
a vector can be added, delivering a new point [240]. By overloading the operators,
we can even add points and vectors, which are internally expressed in a different
coordinate system.

For instance let us consider the position of an object in the scene, expressed by
an instance of thegeoPointclass, with the world coordinate system as internal space
(expressed ine.g., millimeters), and ageoVectorinstance, expressing a mouse move-
ment, with the view port coordinate system as internal space(in pixel coordinates).
Suppose we want to translate the object by the mouse movement. The corresponding
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code could be as simple asobjPos = objPos + mouseMove; as is shown in
the following code:

void Translate(geoPoint& objPos, const geoVector& mouseMove)
{

objPos = objPos + mouseMove;
}

The functionTranslateillustrates the code that a user of the Coordinate Space Frame-
work would write. Note that the internal coordinate spaces of the variables in this
expression typically will be different. Theoperator+function shows how the frame-
work deals with this code internally. ThemouseMove variable is queried in the
coordinate space of theobjPos variable:

geoPoint geoPoint::operator+ (const geoVector& vec) const
{

return geoPoint(m_coordinates + vec.Get(m_space), m_space);
}

The overloadedoperator+of thegeoPointclass will take care thatmouseMove
is transformed to the coordinate space ofobjPos. The Get member function of
the geoVectorclass will transform the internal values of thevec variable from its
own internal space to the internal space of theobjPos variable, and then the two
can be added without any problems. This feature leads to verypowerful and sim-
ple code, as illustrated in theTranslatefunction, since the code expresses what you
want to achieve conceptually, instead of expressing all kinds of difficult coordinate
transformations.

A.8 Real life examples

A.8.1 Mouse click on a voxel volume

Take an iso-surface rendered voxel volume, and suppose we want to determine which
surface voxel lies under the mouse cursor at a mouse click. Inorder to do so, a line
through the cursor position (viewing ray) has to be intersected with the iso-surface.
This line is defined by the cursor position and the camera normal, in the case of a
parallel projection, and by the cursor position and the camera focus point in the case
of a perspective projection. Using the presented framework, it is no problem to define
a line from two points which are constructed in different coordinate systems. After
the line has been defined, it can be easily obtained in voxel space, using theGet
function. Then it should be passed to a 3D variant of Bresenham’s algorithm [242],
to deliver the intersection point.

A.8.2 Defining points of interest

Let’s consider an application with two windows next to each other, in order to view
two registered multi-modality volumetric data sets. In oneview a slice of the refer-
ence data set is displayed, while in the other the corresponding interpolated surface
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Figure A.4: Planning the location of the CT slices, with tilted gantry. The gantry is tilted to
avoid radiating the eyes, while capturing a maximum of relevant anatomicaldata.

through the other data set is shown (non-affine registration). A mouse click marks a
point of interest in one data set. The point can be constructed as follows:geoPoint
mousePnt(viewport1.x, viewport1.y, 0); Drawing the corresponding
point in the other view is as simple as:Plot(mousePnt.Get(viewport2));,
assuming that thePlot function is a library function that takes pixel coordinatesas
input.

Note that theGet function transforms themousePnt coordinates first from view-
port1 (pixels) to world coordinates (millimeters), which is a rigid transformation.
Then the coordinates are transformed from world coordinates to the frame of refer-
ence of volume2, which is a non-affine transformation, executed by a different trans-
formation class. Finally the coordinates are transformed from the frame of reference
to viewport2, which is a rigid transformation again, delivering the pixel coordinates
of the point to be plotted. This complete procedure remains hidden for the user of the
framework.

A.8.3 Gantry-tilt CT volumes

CT volumes, which have been acquired with a tilted gantry, produce a voxel space
with non-orthogonal axes (see figure A.4). Typically such volumes are resampled
on a orthogonal grid for volumetric visualization, leadingto loss of image quality.
However, it is possible to encapsulate the shearing (skew) that is introduced by the
non-orthogonality in an affine transformation (e.g., expressed in a 4*4 matrix). In this
way the data can be depicted without resampling, using our framework.

For instance, a ray-cast algorithm could define the viewing rays in camera space,
and feed them to the interpolator. The interpolator queriesthe respective rays in
voxel space, and theGet function takes care of the transformation from camera to
world space to voxel space. The latter step involves the shear operation.
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A.8.4 Follow camera orientation

Suppose we want one single object in the 3D scene always to be presented with
the same side to the camera. This object, however, should be positioned and scaled
according to its location in the scene (i.e., moving camera could change only the
rotation of the object, but not its translation or scaling).To solve this task, we can
define togeoVector instances in camera space, representing thex- andy-axis of
the camera. For thex-axis this can look like:

geoVector x_camera(1,0,0,cameraSpace);

Now we will rotate the object such that itsx-axis will point in the direction of the
camerax-axis. To do so we query the camerax-axis in the coordinate space of the
object:x camera.Get(objectSpace); The nice thing is that this produces the
orientation of the camerax-axis in the object space instantaneously, no matter how
many nodes there are between the camera and the object in the scene graph. The
vector still has to be normalized, and then the dot product between this vector and
the objectx-axis (which is simply (1,0,0)) delivers the cosine of the angle that we
should rotate. The cross product delivers the rotation axis. The same procedure can
be followed to orient they-axis correctly.

A.9 Conclusions

In this chapter we have introduced a generic software solution for a flexible and trans-
parent framework for handling multiple coordinate spaces.The proposed framework
is especially powerful when the number of coordinate spacesis large and their rela-
tions are dynamic, such as ise.g., the case in multi-modality medical applications.

The complexity of dealing with multiple coordinate spaces lies in the transforma-
tion between the individual spaces. The strength of the proposed framework is the
fact that these transformations are maintained at a single spot, and in the rest of the
code no awareness of these transformations is needed. The resulting code expresses
conceptually what the programmer wants to achieve, insteadof expressing all kinds
of difficult coordinate transformations.

In the case that the actual values of a geometry object are needed with respect
to a certain coordinate space, these can only be obtained by explicitly passing the
desired coordinate space to theGet operation. This severely reduces the chance of
‘assuming’ a wrong coordinate space, one of the most common causes of bugs in
such applications. If a transformation is needed from the internal coordinate space
to the requested one, the transformation is performed automatically, and hidden from
the user of the function call.

It is worth mentioning that the described framework has beensuccessfully imple-
mented in two medium and three large scale software projects.
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