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ABSTRACT
Intensity based two-dimensional to three-dimensional (2D-
3D) registration algorithms usually rely on the generation
of a Digitally Reconstructed Radiograph (DRR) in each it-
eration of the registration algorithm. The vast majority of
the computation time of such registration algorithms can be
contributed to the calculations needed to produce DRRs.
Since 2D-3D registration often is applied during clinical
interventions, it is of great importance to obtain the result
of the registration within limited time. We present an ap-
proach that is both very fast and accurate, harvesting the
parallel processing power of today’s mainstream graphics
hardware. Especially we use the high precision z-buffer as
intermediate buffer, in order to produce accurate results.
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1 Introduction

The objective of a 2D-3D registration algorithm is to find a
spatial mapping between the 2D and the 3D image. Typi-
cally a registration algorithm consists of a similarity mea-
sure, indicating the quality of a given spatial mapping, and
an optimization algorithm, which iteratively searches the
optimum (maximum or minimum, depending on the mea-
sure) of the similarity measure. The search space con-
sists of the multi-dimensional control variables of the spa-
tial mapping. For intensity based 2D-3D registration al-
gorithms, generally a Digitally Reconstructed Radiograph
(DRR) has to be generated in each iteration of the optimiza-
tion algorithm, in order to calculate the similarity measure.
The generation of such a DRR is computationally expen-
sive, and the largest part of the computation time of the
2D-3D registration algorithm can be accounted to the gen-
eration of the DRRs. Therefore, it is our objective to accel-
erate its computation by using off-the-shelf graphics hard-
ware, without loss of accuracy.

The purpose of a DRR is the extraction of a 2D image
from a 3D CT dataset, which can be correlated with an X-
ray image. The intensities on the X-ray image are the result

of the X-ray absorption along the paths of the rays:

I = I0 e−
∫

µ(x)dx (1)

WherebyI and I0 are the output and input X-ray inten-
sity andµ(x) expresses the attenuation coefficient along the
path of the ray. The Hounsfield scale is used in CT datasets
to quantitatively describe the radiodensity per volume ele-
ment. Since there is a linear correspondence between the
X-ray attenuation coefficients, and the Hounsfield units, the
DRR can be based on casting virtual rays through the CT
volume, and integrating the encountered Hounsfield val-
ues [1].

The evaluation of a line integral, along the path of a
given ray through the discrete grid of the CT dataset, can
be expressed as:

L =
∑

i

∑

j

∑

k

l(i, j, k) · p(i, j, k) (2)

Wherebyp(i, j, k) is the intensity of the voxel at index
i, j, k, and l(i, j, k) is the contribution of that particular
voxel to the given ray.l(i, j, k) is determined by the path
of the ray and the interpolation scheme. The brute force
execution of equation 2 would be rather inefficient, since
for most interpolation schemes, such as nearest neighbour
and tri-linear,l(i, j, k) is zero for the vast majority of the
voxels.

The Graphics Processing Unit (GPU) can be regarded
as a Single Instruction Multiple Data (SIMD) processor,
meaning that it can perform the same instruction on mul-
tiple data simultaneously. It has been demonstrated that
volume rendering can be performed very efficiently, using
the GPU [2, 3]. There is, however, a serious limitation that
has to be overcome, when employing the GPU for DRR
generation; intermediate results stored in buffer arrays, are
typically of 8-bit integer point precision. This is especially
a problem in summations: when a small number is added
to a large number, the small number simply ‘disappears’,
due to the lack of precision. That may not be a problem for
a single addition, but in the addition of a lot of small num-
bers, the error becomes noticeable. It should be pointed out
that this effect still persists with 16-bit floating point num-
bers, since they only have a 10-bit mantissa. The usage
of floating point buffers was not an option for us anyway,
since they are only available in the most recent graphics
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(a) (b) (c)

Figure 1. (a) Axis-aligned, and (b) view port-aligned orientation of the textured slices through the CT dataset volume. (c) The
sample in the volume at position~v is projected on the detector grid at position~p.

hardware implementations, and we have to support a large
installed base. Therefore, we present an approach that uses
the higher precision of the graphics card z-buffer as inter-
mediate buffer, which is a standard feature on almost any
graphics card.

2 State of the art

The registration of 2D X-ray images (such as fluoroscopy
images) and 3D CT images has a number of clinical
applications, such as radiotherapy planning and verifica-
tion [4, 5], surgery planning and guidance [6, 7], and min-
imal invasive treatment in cardiac [8], vascular [7, 9, 10]
and neuro-interventions [11, 12].

Intensity-based 2D-3D registration methods [6, 7, 10,
12, 13, 14, 15, 16, 17] directly use the pixel and voxel val-
ues to calculate a similarity measure, and require no or little
segmentation. They are usually based on the generation of
a DRR in each iteration.

DRR generating algorithms can be regarded as a sub-
set of the class of Volume Rendering algorithms. There-
fore, various methods available for efficient Volume Ren-
dering can also be applied to DRR generation, such as ray-
casting [18, 19, 20], splatting [21, 22], shear-warp [23] and
frequency domain rendering [24, 25]. Rusakoffet al. [26]
have presented a method for accelerating the generation of
DRRs, based on attenuation fields. Though this method
is fast, it is preceded by a relatively time-consuming pre-
processing step, and demands a considerable amount of
memory.

Employing the texture capabilities of modern graph-
ics hardware for producing DRRs has already been pub-
lished by Cullip and Neumann [2] as early as 1993. They
also pointed out the low precision issues that occur when
using their approach.

3 Method

3.1 Textured slices

A well established approach to garner the parallel process-
ing power of modern graphics hardware in Volume Ren-

dering, is the usage of textured slices [2, 3]. This means
that a set of parallel planes (slices) are defined through the
volume space, and the CT information, contained by a 3D
texture, is interpolated on these slices. In order to preserve
the full dynamic range of the CT data, we use 16-bit tex-
tures. Typically the slices are placed at a constant interval.
The orientation of the slices can be either aligned with the
view port, or with one of the dataset’s main axes (x-, y-, or
z-axis), see figure 1. In the case of axis-aligned rendering
the main axis with the smallest angle to the view port nor-
mal is chosen to serve as normal for the slices. The slices
are then projected consecutively on a image plane.

3.2 Projecting the slices

The generation of a DRR comprises the calculation of line
integrals over the Hounsfield values along the rays through
the voxel volume. The rays are defined by the focal spot
of the (virtual) X-ray source, and a discrete point on the
(virtual) detector grid.

The technique of textured slices can also be applied
to obtain the line integrals [19, 2]. The line integral is then
calculated by summating the samples at the intersection
points of the ray and the slices. The samples are defined
by the interpolated attenuation values at the intersection
points. Usually bi-linear or tri-linear interpolation is used.
Since the distance between the sample points depends on
the direction of a ray, see figure 1, the summation has to
be weighted with the sample distance. The sample distance
corresponds to(1/ cos φ), wherebyφ is the angle between
the normal of the slices and the vector that describes the
direction of a particular ray.

In order to interpolate the slices on the discrete grid
of the detector, a4 × 4 matrix M is defined, such that
~p = M · ~v, whereby~p and ~v are homogenous coordi-
nates. Vector~v is then a coordinate in the voxel space,
and vector~p a coordinate on the detector grid (thez value
of ~p is simply disregarded). MatrixM can be decomposed
into two matrices:M = P · T , wherebyP is the per-
spective transformation defined by the position of the focal
spot(fx, fy, fz), the position of the center of the detector
(cx, cy, cz), and the detector dimensions(dx, dy). All co-



ordinates are assumed in the detector coordinate system:

P =




2/dx 0 0 2(fx − cx)/dx

0 2/dy 0 2(fy − cy)/dy

0 0 1 0
0 0 1/(fz − cz) 1


 (3)

Matrix T is defined by the viewing incidence on the CT
dataset, and can be expressed as:

T =
(

R ~t
0 1

)
(4)

WherebyR is a 3 by 3 rotational matrix, and the three com-
ponents of vector~t express the translation. In the case of
an X-ray angiography C-arm system, the translation can be
set to zero.R is determined by the L-arm angle (γ), the
rotation (β) and the angulation (α) of the C-arm. Note that
the order of the matrix multiplications is given by the me-
chanics of the C-arm system.

R = Rx ·Ry ·Rz =




1 0 0
0 cos α − sinα
0 sin α cosα


 ·




cosβ 0 sin β
0 1 0

− sin β 0 cos β


 ·




cos γ − sin γ 0
sin γ cos γ 0

0 0 1




(5)

Now that matrixM is established, expressing the re-
lation between the voxel space and the detector space, we
can project any given position immediately on the detector
grid. Thus we can define a textured polygon through a slice
in the volume, and project the sampled values on that slice
immediately on the detector grid. This is rather trivial task,
using the GPU, since only the four polygon corners need to
be specified, and the GPU will perform the interpolation of
all voxel values that lie on the polygon.

3.3 Accurate summation

By summating the slices in the frame buffer, a DRR can be
created. There is only one problem: by default the frame
buffer is in 8-bit integer format on the PC platform. There-
fore, here an alternative approach taken: we render to the
z-buffer. This buffer, meant for occlusion tests, can be in
16-bit, 24-bit or 32-bitinteger precision. In order to use
the z-buffer as render target, we create two intermediate z-
buffer textures. In each render pass we render a slice to one
z-buffer texture as output, and we bind the other one as in-
put texture. (A single texture cannot serve as input and out-
put simultaneously.) The attenuation values sampled from

f

p

dx

dz

Figure 2. In order to perform an efficient weighting of the
rays with the sample distance, we use tri-linear interpola-
tion of vector~d′, which is based on the vector between the
positions of the corner pixels~p and the focal spot~f .

the polygon are then added to the values already present
in the input z-buffer texture, by a fragment program. In the
next render pass the roles of both textures are swapped, and
the next slice is processed.

A variation of the above would be rendering to the
z-buffer, which is associated with a frame buffer, and to
copying the result to a z-buffer texture, which is then bound
as input texture for the next render pass. The advantage of
this method is the fact that there is only one intermediate
z-buffer texture, and it is somewhat simpler to implement.
On the other hand, however, this alternative way is slower,
since the entire z-buffer needs to be copied every pass.

3.4 Weighting the integrals

The final summated result in the z-buffer texture still needs
to be corrected for the different sampling distance in each
line integral. Like mentioned before, this corresponds to
weighting with1/ cosφ, wherebyφ is the angle between
the normal of the slices and the ray direction. However, the
direction of the individual rays is not available, since ma-
trix M was used to directly project the textured slices on the
virtual detector grid. Of course it is possible to calculate the
line direction for every pixel in the bitmap. We, however,
use a more efficient scheme: First the direction of the lines
going through the four corner pixels of the detector grid is
calculated. The position of a corner pixel is given by the
detectorCenter± (0.5 · detectorSize− 0.5 · pixelSize).
Let ~p denote the position of a corner pixel, and~f the posi-
tion of the focal spot. The direction of the corresponding
line is then given by:~d = ~p− ~f . All four corner directions
~d are divided by their respective z-component:

~d′ =
(

dx

dz
,
dy

dz
, 1

)
(6)

Since all the pixels of the line integral bitmap lie on
a regular grid (i.e. the distance between the pixel position
is always the same, see fig. 2), the direction of the lines
of the other pixels can be obtained by a simple tri-linear
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Figure 3. A fraction of a DRR produced (a) using the 8-bit frame buffer, (b) using the 32-bit z-buffer.

interpolation of the direction~d′ of the corner pixels. This
is only possible because we made sure that the z-value is
the same for all corner directions. The weighting factor per
pixel then isw = 1/ cosφ = 1/(~n · ~d′norm), whereby~n
is the normal of the slices, and ~d′norm is the normalized
interpolated~d′. This procedure is much faster since the tri-
linear interpolation can be very efficiently performed by the
GPU.

4 Results

Figure 3 shows the same portion of a DRR generated using
the 8-bit frame buffer and the 32-bit z-buffer. Using the 8-
bit buffer leads to heavy saturation and quantization effects.
We found that the deviation between a DRR produced by
our z-buffer GPU implementation and by a similar CPU
implementation was always less than 0.1%, using textures
with 16 bit per voxel for the CT datasets. On a PC with
a Intel Xeon 2.33 GHz Processor, and a nVidia QuadroFX
3500 graphics card with 256 MB of onboard memory, it
took on average 47 ms to transfer a 4 MB dataset to the
texture memory, 125 ms to transfer a 32 MB dataset, and
875 ms for a 200 MB dataset. It should be noted that this
transaction only needs to be done once per dataset. The
generation of a DRR on a5122 grid of the 4 MB dataset
could be performed in 18 ms, and the 32 MB dataset took
29 ms, while the 200 MB dataset was rendered in 78 ms,
which corresponds to respectively 56 fps, 35 fps and 13
frames per second.

5 Conclusions

We have described a method for implementing the gener-
ation of Digitally Reconstructed Radiographs (DRR), des-
ignated to use the GPU. Our method is based on mapping
the Hounsfield values, found in a 3D CT dataset on a set
of textured slices. The slices are then projected on a virtual
detector, where the projected values are summated. The
resulting summated values are finally corrected for the dif-
ferences in sampling distance, by applying a weighting.

We have described how the algorithm can be imple-
mented to run on the GPU, using only readily available fea-

tures. We managed to achieve a very high accuracy, by
using the high precision of the z-buffer. A very efficient
weighting method was accomplished by calculating the di-
rection of the rays of the corner pixels, and using the inter-
polation capabilities of the GPU to determine the directions
of the rays through the other pixels.

The presented approach does not require any prepro-
cessing, apart from the transfer of the CT data to graphics
card, and the DRRs are generated very fast. This makes
this approach highly suitable for application in intensity-
based 2D-3D registration algorithms. Especially since 2D-
3D registration often is applied during a clinical interven-
tion, and the calculation time of the algorithm contributes
to the time of the clinical procedure.
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